Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We introduce a data-driven potential aimed at the investigation of pressure-dependent phase transitions in bulk germanium, including the estimate of kinetic barriers. This is achieved by suitably building a database including several configurations along minimum energy paths, as computed using the solid-state nudged elastic band method. After training the model based on density functional theory (DFT)-computed energies, forces, and stresses, we provide validation and rigorously test the potential on unexplored paths. The resulting agreement with the DFT calculations is remarkable in a wide range of pressures. The potential is exploited in large-scale isothermal-isobaric simulations, displaying local nucleation in the R8 to β-Sn pressure-induced phase transformation, taken here as an illustrative example.more » « less
-
Machine learning potentials (MLPs) have attracted significant attention in computational chemistry and materials science due to their high accuracy and computational efficiency. The proper selection of atomic structures is crucial for developing reliable MLPs. Insufficient or redundant atomic structures can impede the training process and potentially result in a poor quality MLP. Here, we propose a local-environment-guided screening algorithm for efficient dataset selection in MLP development. The algorithm utilizes a local environment bank to store unique local environments of atoms. The dissimilarity between a particular local environment and those stored in the bank is evaluated using the Euclidean distance. A new structure is selected only if its local environment is significantly different from those already present in the bank. Consequently, the bank is then updated with all the new local environments found in the selected structure. To demonstrate the effectiveness of our algorithm, we applied it to select structures for a Ge system and a Pd13H2 particle system. The algorithm reduced the training data size by around 80% for both without compromising the performance of the MLP models. We verified that the results were independent of the selection and ordering of the initial structures. We also compared the performance of our method with the farthest point sampling algorithm, and the results show that our algorithm is superior in both robustness and computational efficiency. Furthermore, the generated local environment bank can be continuously updated and can potentially serve as a growing database of feature local environments, aiding in efficient dataset maintenance for constructing accurate MLPs.more » « less
-
Calculations with high accuracy for atomic and inter-atomic properties, such as nuclear magnetic resonance (NMR) spectroscopy and bond dissociation energies (BDEs) are valuable for pharmaceutical molecule structural analysis, drug exploration, and screening. It is important that these calculations should include relativistic effects, which are computationally expensive to treat. Non-relativistic calculations are less expensive but their results are less accurate. In this study, we present a computational framework for predicting atomic and inter-atomic properties by using machine-learning in a non-relativistic but accurate and computationally inexpensive framework. The accurate atomic and inter-atomic properties are obtained with a low dimensional deep neural network (DNN) embedded in a fragment-based graph convolutional neural network (F-GCN). The F-GCN acts as an atomic fingerprint generator that converts the atomistic local environments into data for the DNN, which improves the learning ability, resulting in accurate results as compared to experiments. Using this framework, the 13C/1H NMR chemical shifts of Nevirapine and phenol O–H BDEs are predicted to be in good agreement with experimental measurement.more » « less
An official website of the United States government
