skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2102406

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Additive manufacturing enables the fabrication of complex designs while minimizing waste, but faces challenges related to defects and process anomalies. This study presents a novel multimodal Retrieval-Augmented Generation-based framework that automates anomaly detection across various Additive Manufacturing processes leveraging retrieved information from literature, including images and descriptive text, rather than training datasets. This framework integrates text and image retrieval from scientific literature and multimodal generation models to perform zero-shot anomaly identification, classification, and explanation generation in a Laser Powder Bed Fusion setting. The proposed framework is evaluated on four L-PBF manufacturing datasets from Oak Ridge National Laboratory, featuring various printer makes, models, and materials. This evaluation demonstrates the framework's adaptability and generalizability across diverse images without requiring additional training. Comparative analysis using Qwen2-VL-2B and GPT-4o-mini as MLLM within the proposed framework highlights that GPT-4o-mini outperforms Qwen2-VL-2B and proportional random baseline in manufacturing anomalies classification. Additionally, the evaluation of the RAG system confirms that incorporating retrieval mechanisms improves average accuracy by 12% by reducing the risk of hallucination and providing additional information. The proposed framework can be continuously updated by integrating emerging research, allowing seamless adaptation to the evolving landscape of AM technologies. This scalable, automated, and zero-shot-capable framework streamlines AM anomaly analysis, enhancing efficiency and accuracy. 
    more » « less
    Free, publicly-accessible full text available December 4, 2026
  2. MultiTaskDeltaNet (MTDN) reframes semantic segmentation as change detection, enabling data-efficient, automated operando ETEM analysis for spatially-resolved carbon gasification kinetics with superior performance on small, ambiguous features. 
    more » « less
    Free, publicly-accessible full text available November 11, 2026
  3. High-throughput screening enabled by structure-property prediction models is a powerful approach for accelerating materials discovery. However, while machine learning of structure-property models have become widespread, its application to mixtures remains limited due to increased complexity and the scarcity of available data. Machine learning methods for high-throughput screening of eutectic mixtures have been proposed in recent years, but there remain challenges due to the lack of diverse, open-access datasets and the need for feature engineering based on chemical knowledge. To overcome these limitations, we propose a method using Siamese graph neural networks trained solely on structural information, without requiring any prior chemical descriptors, to predict eutectic melting temperatures. We demonstrate on a dataset of molten salt eutectics that this approach can reach similar performance to chemistry-based models that require significantly more prior knowledge. We show that lower-order mixtures may be used to augment data on higher-order mixtures. Interestingly, our model trained on inorganic molten salts seems to learn information about the ideal mixture model. We also evaluate the efficacy of using our inorganic molten salt model for transfer learning with a variety of organic eutectic mixtures. 
    more » « less
    Free, publicly-accessible full text available November 2, 2026
  4. We combine graph neural networks and an upper bound energy minimization framework to explore >90 000 candidates, discovering 1810 stable Zintl phases with high precision and revealing the key role of ionic bonding in their stability. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026