skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2102526

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Chen, Qian; Zhang, Xin (Ed.)
    Abstract Over the last several decades, colloidal nanoparticles have evolved into a prominent class of building blocks for materials design. Important advances include the synthesis of uniform nanoparticles with tailored compositions and properties, and the precision construction of intricate, higher-level structures from nanoparticles via self-assembly. Grasping the modern complexity of nanoparticles and their superstructures requires fundamental understandings of the processes of nanoparticle growth and self-assembly.In situliquid phase transmission electron microscopy (TEM) has significantly advanced our understanding of these dynamic processes by allowing direct observation of how individual atoms and nanoparticles interact in real time, in their native phases. In this article, we highlight diverse nucleation and growth pathways of nanoparticles in solution that could be elucidated by thein situliquid phase TEM. Furthermore, we showcasein situliquid phase TEM studies of nanoparticle self-assembly pathways, highlighting the complex interplay among nanoparticles, ligands, and solvents. The mechanistic insights gained fromin situliquid phase TEM investigation could inform the design and synthesis of novel nanomaterials for various applications such as catalysis, energy conversion, and optoelectronic devices. Graphical abstract 
    more » « less
  2. Superlattices of polyhedral nanocrystals exhibit emergent properties defined by their structural arrangements, but native nanocrystal ligands often limit their programmability. Polymeric ligands address this limitation by enabling tunable nanocrystal softness through modifications of polymer molecular weight and grafting density. Here, we investigate phase transitions in polymer-grafted nanooctahedra by varying polymer length, nanocrystal size, truncation, and ligand density. In two-dimensional superlattices, longer polymers or smaller nanooctahedra induce a transition from orientationally ordered to hexagonal rotator lattices. In three-dimensional superlattices, increasing polymer length drives transitions from Minkowski to body-centered cubic and plastic hexagonal close-packed phases, while higher grafting densities further enable transitions to simple hexagonal phases. Polymer brush and thermodynamic perturbation theories, supported by Monte Carlo simulations, uncover the entropic and enthalpic forces that govern these transitions. This work highlights the versatility of polymer-grafted anisotropic nanocrystals as building blocks for designing hierarchical superstructures and metamaterials with customizable properties. 
    more » « less
    Free, publicly-accessible full text available July 18, 2026
  3. Free, publicly-accessible full text available July 1, 2026
  4. The self-assembly of shape-anisotropic nanocrystals into large-scale structures is a versatile and scalable approach to creating multifunctional materials. The tetrahedral geometry is ubiquitous in natural and manmade materials, yet regular tetrahedra present a formidable challenge in understanding their self-assembly behavior as they do not tile space. Here, we report diverse supracrystals from gold nanotetrahedra including the quasicrystal (QC) and the dimer packing predicted more than a decade ago and hitherto unknown phases. We solve the complex three-dimensional (3D) structure of the QC by a combination of electron microscopy, tomography, and synchrotron X-ray scattering. Nanotetrahedron vertex sharpness, surface ligands, and assembly conditions work in concert to regulate supracrystal structure. We also discover that the surface curvature of supracrystals can induce structural changes of the QC tiling and eventually, for small supracrystals with high curvature, stabilize a hexagonal approximant. Our findings bridge the gap between computational design and experimental realization of soft matter assemblies and demonstrate the importance of accurate control over nanocrystal attributes and the assembly conditions to realize increasingly complex nanopolyhedron supracrystals. 
    more » « less
  5. Crystallization is a universal phenomenon underpinning many industrial and natural processes and is fundamental to chemistry and materials science. However, microscopic crystallization pathways of nanoparticle superlattices have been seldom studied mainly owing to the difficulty of real-time observation of individual self-assembling nanoparticles in solution. Here, using in situ electron microscopy, we directly image the full self-assembly pathway from dispersed nanoparticles into ordered superlattices in nonaqueous solution. We show that electron-beam irradiation controls nanoparticle mobility, and the solvent composition largely dictates interparticle interactions and assembly behaviors. We uncover a multistep crystallization pathway consisting of four distinct stages through multi-order-parameter analysis and visualize the formation, migration, and annihilation of multiple types of defects in nanoparticle superlattices. These findings open the door for achieving independent control over imaging conditions and nanoparticle assembly conditions and will enable further study of the microscopic kinetics of assembly and phase transition in nanocolloidal systems. 
    more » « less