skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2103062

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Common Era history of effective moisture in the Central Andes is poorly understood, as most Andean proxy records reflect large-scale atmospheric circulation over the South American lowlands rather than localized precipitation vs. evaporation. Here we present 1800-year leaf wax hydrogen and carbon isotope sedimentary records from Lake Chacacocha (13.96°S, 71.08°W, 4,860 m asl.) in the Central Andes. Leaf wax δ2H from different chain lengths offers information about large-scale atmospheric conditions and local-scale effective moisture. Our leaf wax δ2H data record a gradual intensification of the South American summer monsoon (SASM) beginning around ~1250 CE, prior to the external forcings of the Little Ice Age (LIA). Despite peak SASM intensification, our leaf wax δ13C data reveal a locally arid interval between ca. 1600 and 1800 CE. The arid interval was most likely driven by enhanced evaporation and reduced local precipitation, as indicated by the hydrogen isotope fractionation between mid- and long-chain n-alkanes as well as by climate model simulations. Our results help to reconcile conflicting interpretations of the SASM, glacial, and lake-level histories in the Central Andes during the Common Era. 
    more » « less
    Free, publicly-accessible full text available December 12, 2025
  2. Numerous temperature and environmental proxies are based on glycerol dialkyl glycerol tetraethers (GDGTs), which are membrane lipids commonly found in the water columns and sediments of lakes. The TEX86 temperature proxy is based on isoprenoid GDGTs, which are produced by members of the archaea, and is used to reconstruct lake surface temperature. Branched GDGTs are lipids produced by bacteria and form the basis of the MBT′5ME temperature proxy. Although many outstanding questions still exist regarding proxies based on isoprenoid and branched GDGTs, both compound classes have been relatively well-studied in lakes. More recently, other types of GDGTs and related compounds are increasingly being reported from lacustrine sediments including hydroxylated GDGTs (OH-GDGTs) and glycerol monoalkyl glycerol tetraethers (GMGTs). In the process of generating lacustrine TEX86 or MBT′5ME temperature records, we noted that OH-GDGTs or GMGTs (or both) are frequently present. The RI-OH, based on OH-GDGTs, recently has been proposed as a temperature proxy in lakes while GMGTs are associated with oxygen-deficient environments. Here we examine distributions of OH-GDGTs and GMGTs in a variety of lakes that also have existing TEX86 or MBT’5ME temperature reconstructions. These lakes range from small to large, shallow to deep, tropical to arctic, differ in oxygenation state, and have sedimentary records covering timespans from the Holocene to multiple glacial-interglacial cycles. Study lakes include El’gygytgyn (arctic Russia), Malawi (tropical southeast Africa), Issyk Kul (Kyrgyzstan), Lake 578 (Greenland), and high elevation lakes in the central Andes (South America). We explore the presence/absence of these compounds in contrasting depositional environments and examine their GDGT distributions in relationship to temperature variability, oxic/anoxic conditions, hydroclimate fluctuations, and other geochemical/environmental parameters. 
    more » « less
    Free, publicly-accessible full text available December 11, 2025
  3. Climate changes during the mid- to late-Holocene, after the last vestiges of glacial ice sheets dwindled, provide important context for climate change today. In the tropical Andes, most of the continuous paleoclimate records covering the late Holocene are derived from the oxygen isotope composition of ice cores, speleothems, and lake carbonates. These archives are powerful recorders of large-scale changes in circulation and monsoon intensity, but they do not necessarily capture local moisture balance, and so reconstructions of local precipitation and aridity remain scarce. Here we present contrasting histories of local effective moisture vs. regional circulation from several new biomarker records preserved in lakes and peat in the Colombian and Peruvian Andes. We focus on the hydrogen isotope composition of long-chain plant waxes, which reflects precipitation δ2H similarly to δ18O from ice cores and speleothems; and the δ13C of waxes and the δ2H of mid-chain waxes, which reflect local water stress and effective moisture. In both the Northern and Southern Hemisphere tropical Andes, fairly gradual δ2H shifts during the late Holocene indicate a progressive intensification of circulation in the South American lowlands. On the other hand, plant wax δ13C and mid-chain δ2H records indicate abrupt transitions into and out of intervals of water stress and aridity – similar to findings from pollen and sediment lithology from elsewhere in the tropical Andes. We draw on climate models and proxy data syntheses to help reconcile these curiously different accounts of effective moisture in the tropical Andes since the mid-Holocene and discuss implications for modern climate research. 
    more » « less
    Free, publicly-accessible full text available December 10, 2025
  4. Late Holocene air temperature of the tropical Andean highlands is poorly constrained. Most inferences of past temperature from this region are either qualitatively inferred from environmental proxies such as pollen, moraines, and XRF, or derived from proxies with multiple climatic drivers such as ice core oxygen isotopes. Historical temperature records are either short or nonexistent. Here we present a quantitative reconstruction of air temperature based on branched Glycerol Dialkyl Glycerol Tetraethers (br-GDGTs) derived from sediments of Lake Chacacocha, southeastern Peru (13.96 S, 71.08 W; 4,860 m asl). Chacacocha’s catchment and lake remain above freezing for most of the year. Thus, we interpret calibrated temperatures to reflect mean annual air temperature, though potentially with a bias towards months with more water column mixing. The Chacacocha br-GDGT record suggests a cooling trend after the first millennium, beginning prior to the cooling recorded in global temperature reconstructions. However, a multi-centennial cooling event between 400-600 CE appears to be the strongest centennial-scale cooling of the Common Era, unlike global temperature but in agreement with regional pollen and other paleoenvironmental proxies. The Chacacocha br-GDGT record exhibits striking similarity to a diatom-inferred lake stratification reconstruction and bulk carbon isotopes from the same sediment core, suggesting that the aquatic ecosystem and the surrounding environment responded to air temperature changes. We also compare and contextualize our lacustrine br-GDGT record using br-GDGTs from nearby peatlands and soil, isoprenoid GDGTs from nearby Lake Sibinacocha, and the hydrogen and carbon isotope composition of leaf waxes from the same sediment core. Our results help to illuminate long-term temperature change and its impacts on tropical Andean environments. 
    more » « less