skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2103707

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Meteor radio afterglows (MRAs) and optical persistent trains (PTs) are two types of long‐lived phenomena which are occasionally observed following the occurrence of a meteor. Both phenomena are thought to be produced by intrinsic emission mechanisms; PTs have been associated with chemiluminescent reactions between meteoric metals and atmospheric ozone whereas MRA emission arises due to radiation emitted by processes in the meteor's plasma trail. Previous research has identified an association between these phenomena, and proposed a mechanism by which the reactions responsible for PTs could also fuel MRAs. In this work, we investigate said connection using a substantially larger catalog containing hundreds of examples of each phenomenon. Using meteor data from the Global Meteor Network (GMN), we performed a directed search in all‐sky radio images obtained by the Long Wavelength Array (LWA) radio telescope to identify meteors with MRAs. The resulting catalog spanned nearly 2 years and contained a total of 2,887 meteors, with 675 MRA events and 372 PTs. Statistical analyses suggest that the connection between the two phenomena is not as strong as previously supposed. Additionally, we show that the MRA occurrence rates do not have a strong seasonal dependence, meteoroid strength dependence, or preference between meteor showers and sporadics. Interestingly, we find that a meteor's entry angle appears to play a significant role in whether an MRA is observed. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  2. Abstract We present a census of 100 pulsars, the largest below 100 MHz, including 94 normal pulsars and six millisecond pulsars, with the Long Wavelength Array (LWA). Pulse profiles are detected across a range of frequencies from 26–88 MHz, including new narrowband profiles facilitating profile evolution studies, and breaks in pulsar spectra at low frequencies. We report mean flux density, spectral index, curvature, and low-frequency turnover-frequency measurements for 97 pulsars, including new measurements for 61 sources. Multifrequency profile widths are presented for all pulsars, including component spacing for 27 pulsars with two components. Polarized emission is detected from 27 of the sources (the largest sample at these frequencies) in multiple frequency bands, with one new detection. We also provide new timing solutions for five recently discovered pulsars. Low-frequency observations with the LWA are especially sensitive to propagation effects arising in the interstellar medium. We have made the most sensitive measurements of pulsar dispersion measures (DMs) and rotation measures, with median uncertainties of 2.9 × 10−4pc cm−3and 0.01 rad m−2, respectively, and can track their variations over almost a decade, along with other frequency-dependent effects. This allows for stringent limits on average magnetic fields, with no variations detected above ∼20 nG. Finally, the census yields some interesting phenomena in individual sources, including the detection of frequency- and time-dependent DM variations in B2217+47, and the detection of highly circularly polarized emission from J0051+0423. 
    more » « less
    Free, publicly-accessible full text available March 25, 2026
  3. Abstract This paper presents the results of a nearly 2‐year long campaign to detect and analyze meteor persistent trains (PTs)—self‐emitting phenomena which can linger up to an hour after their parent meteor. The modern understanding of PTs has been primarily developed from the Leonid storms at the turn of the century; our goal was to assess the validity of these conclusions using a diverse sample of meteors with a wide range of velocities and magnitudes. To this end, year‐round observations were recorded by the Widefield Persistent Train camera, 2nd edition (WiPT2) and were passed through a pipeline to filter out airplanes and flag potential meteors. These were classified by visual inspection based on the presence and duration of trains. Observed meteors were cross‐referenced with the Global Meteor Network (GMN) database, which independently detects and calculates meteor parameters, enabling statistical analysis of PT‐leaving meteors. There were 4,726 meteors codetected by the GMN, with 636 of these leaving trains. Among these were a large population of slow, dim meteors that left PTs; these slower meteors had a greater train production rate relative to their faster counterparts. Unlike prior research, we did not find a clear magnitude cutoff or a strong association with fast meteor showers. Additionally, we note several interesting trends not previously reported, which include PT eligibility being primarily determined by a meteor's terminal height and an apparent dynamical origin dependence that likely reflects physical meteoroid properties. 
    more » « less
  4. Abstract We conducted an all‐sky imaging transient search with the Owens Valley Radio Observatory Long Wavelength Array (OVRO‐LWA) data collected during the Perseid meteor shower in 2018. The data collection during the meteor shower was motivated to conduct a search for intrinsic radio emission from meteors below 60 MHz known as the meteor radio afterglows (MRAs). The data collected were calibrated and imaged using the core array to obtain lower angular resolution images of the sky. These images were input to a pre‐existing LWA transient search pipeline to search for MRAs as well as cosmic radio transients. This search detected 5 MRAs and did not find any cosmic transients. We further conducted peeling of bright sources, near‐field correction, visibility differencing and higher angular resolution imaging using the full array for these 5 MRAs. These higher angular resolution images were used to study their plasma emission structures and monitor their evolution as a function of frequency and time. With higher angular resolution imaging, we resolved the radio emission size scales to less than 1 km physical size at 100 km heights. The spectral index mapping of one of the long duration event showed signs of diffusion of plasma within the meteor trails. The unpolarized emission from the resolved radio components suggest resonant transition radiation as the possible radiation mechanism of MRAs. 
    more » « less
  5. ABSTRACT Next-generation aperture arrays are expected to consist of hundreds to thousands of antenna elements with substantial digital signal processing to handle large operating bandwidths of a few tens to hundreds of MHz. Conventionally, FX correlators are used as the primary signal processing unit of the interferometer. These correlators have computational costs that scale as $$\mathcal {O}(N^2)$$ for large arrays. An alternative imaging approach is implemented in the E-field Parallel Imaging Correlator (EPIC) that was recently deployed on the Long Wavelength Array station at the Sevilleta National Wildlife Refuge (LWA-SV) in New Mexico. EPIC uses a novel architecture that produces electric field or intensity images of the sky at the angular resolution of the array with full or partial polarization and the full spectral resolution of the channelizer. By eliminating the intermediate cross-correlation data products, the computational costs can be significantly lowered in comparison to a conventional FX or XF correlator from $$\mathcal {O}(N^2)$$ to $$\mathcal {O}(N \log N)$$ for dense (but otherwise arbitrary) array layouts. EPIC can also lower the output data rates by directly yielding polarimetric image products for science analysis. We have optimized EPIC and have now commissioned it at LWA-SV as a commensal all-sky imaging back-end that can potentially detect and localize sources of impulsive radio emission on millisecond timescales. In this article, we review the architecture of EPIC, describe code optimizations that improve performance, and present initial validations from commissioning observations. Comparisons between EPIC measurements and simultaneous beam-formed observations of bright sources show spectral-temporal structures in good agreement. 
    more » « less
  6. Abstract We present observations of 86 meteor radio afterglows (MRAs) using the new broadband imager at the Long Wavelength Array Sevilleta (LWA‐SV) station. The MRAs were detected using the all‐sky images with a bandwidth up to 20 MHz. We fit the spectra with both a power law and a log‐normal function. When fit with a power law, the spectra varied from flat to steep and the derived spectral index distribution from the fit peaked at −1.73. When fit with a log‐normal function, the spectra exhibits turnovers at frequencies between 30 and 40 MHz, and appear to be a better functional fit to the spectra. We compared the spectral parameters from the two fitting methods with the physical properties of MRAs. We observe a weak correlation between the log‐normal turnover frequency and the altitude of MRAs. The spectral indices from the power law fit do not show any strong correlations with the physical properties of MRAs. However, the full width half maximum (FWHM) duration of MRAs is correlated with the local time, incidence angle, luminosity and optically derived kinetic energy of parent meteoroid. Also, the average luminosity of MRAs seems to be correlated with the kinetic energy of parent meteoroid and the altitude at which they occur. 
    more » « less
  7. Balz, T (Ed.)
    The Intermittent Small Baseline Subset approach to Interferometric Synthetic Aperture Radar data was originally devised as a way to recover information from regions with intermittent coherence, making it particularly useful in agricultural regions or those featuring significant vegetation. However, as modern data products grow in size, the increased computational complexity that this methodology demands makes processing more daunting. Here, we present a solution: leveraging the Bifrost data processing framework and GPUs, we analyze Sentinel-1 data covering a large region of northern California and are able to achieve dramatic speed-ups on the order of 300–400 times faster than CPU-bound implementations of ISBAS, processing the entire dataset in only 5 h. 
    more » « less
  8. The Long Wavelength Array is a radio telescope array located at the Sevilleta National Wildlife Refuge in La Joya, New Mexico, well suited and situated for the observation of lightning. The array consists of 256 high-sensitivity dual polarization antennas arranged in a 100 m diameter. This paper demonstrates some of the capabilities that the array brings to the study of lightning. Once 32 or more antennas are used to image lightning radio sources, virtually every integration period longer than the impulse response of the array includes at least one identifiable lightning emitter, independent of the integration period used. The use of many antennas also allows multiple simultaneous lightning radio sources to be imaged at sub-microsecond timescales; for the flash examined, 51% of the images contained more than one lightning source. Finally, by using many antennas to image lightning sources, the array is capable of locating sources fainter than the galactic background radio noise level, yielding possibly the most sensitive radio maps of lightning to date. This incredible sensitivity enables, for the first time, the emissions originating from the positive leader tips of natural in-cloud lightning to be detected and located. The tip emission is distinctly different from needle emission and is most likely due to positive breakdown. 
    more » « less