skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2103812

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Advances in biofabrication have enabled the generation of freeform perfusable networks mimicking vasculature. However, key challenges remain in the effective endothelialization of these complex, vascular-like networks, including cell uniformity, seeding efficiency, and the ability to pattern multiple cell types. To overcome these challenges, we present an integrated fabrication and endothelialization strategy to directly generate branched, endothelial cell-lined networks using a diffusion-based, embedded 3D bioprinting process. In this strategy, a gelatin microparticle sacrificial ink delivering both cells and crosslinkers is extruded into a crosslinkable gel precursor support bath. A self-supporting, perfusable structure is formed by diffusion-induced crosslinking, after which the sacrificial ink is melted to allow cell release and adhesion to the printed lumen. This approach produces a uniform cell lining throughout networks with complex branching geometries, which are challenging to uniformly and efficiently endothelialize using conventional perfusion-based approaches. Furthermore, the biofabrication process enables high cell viability (>90%) and the formation of a confluent endothelial layer providing vascular-mimetic barrier function and shear stress response. Leveraging this strategy, we demonstrate for the first time the patterning of multiple endothelial cell types, including arterial and venous cells, within a single arterial–venous-like network. Altogether, this strategy enables the fabrication of multi-cellular engineered vasculature with enhanced geometric complexity and phenotypic heterogeneity. 
    more » « less
    Free, publicly-accessible full text available February 11, 2026
  2. Abstract The biochemical and biophysical properties of the extracellular matrix (ECM) play a pivotal role in regulating cellular behaviors such as proliferation, migration, and differentiation. Engineered protein‐based hydrogels, with highly tunable multifunctional properties, have the potential to replicate key features of the native ECM. Formed by self‐assembly or crosslinking, engineered protein‐based hydrogels can induce a range of cell behaviors through bioactive and functional domains incorporated into the polymer backbone. Using recombinant techniques, the amino acid sequence of the protein backbone can be designed with precise control over the chain‐length, folded structure, and cell‐interaction sites. In this review, the modular design of engineered protein‐based hydrogels from both a molecular‐ and network‐level perspective are discussed, and summarize recent progress and case studies to highlight the diverse strategies used to construct biomimetic scaffolds. This review focuses on amino acid sequences that form structural blocks, bioactive blocks, and stimuli‐responsive blocks designed into the protein backbone for highly precise and tunable control of scaffold properties. Both physical and chemical methods to stabilize dynamic protein networks with defined structure and bioactivity for cell culture applications are discussed. Finally, a discussion of future directions of engineered protein‐based hydrogels as biomimetic cellular scaffolds is concluded. 
    more » « less
  3. Abstract The biofabrication of three-dimensional (3D) tissues that recapitulate organ-specific architecture and function would benefit from temporal and spatial control of cell-cell interactions. Bioprinting, while potentially capable of achieving such control, is poorly suited to organoids with conserved cytoarchitectures that are susceptible to plastic deformation. Here, we develop a platform, termed Spatially Patterned Organoid Transfer (SPOT), consisting of an iron-oxide nanoparticle laden hydrogel and magnetized 3D printer to enable the controlled lifting, transport, and deposition of organoids. We identify cellulose nanofibers as both an ideal biomaterial for encasing organoids with magnetic nanoparticles and a shear-thinning, self-healing support hydrogel for maintaining the spatial positioning of organoids to facilitate the generation of assembloids. We leverage SPOT to create precisely arranged assembloids composed of human pluripotent stem cell-derived neural organoids and patient-derived glioma organoids. In doing so, we demonstrate the potential for the SPOT platform to construct assembloids which recapitulate key developmental processes and disease etiologies. 
    more » « less
  4. Abstract Microextrusion‐based 3D bioprinting into support baths has emerged as a promising technique to pattern soft biomaterials into complex, macroscopic structures. It is hypothesized that interactions between inks and support baths, which are often composed of granular microgels, can be modulated to control the microscopic structure within these macroscopic‐printed constructs. Using printed collagen bioinks crosslinked either through physical self‐assembly or bioorthogonal covalent chemistry, it is demonstrated that microscopic porosity is introduced into collagen inks printed into microgel support baths but not bulk gel support baths. The overall porosity is governed by the ratio between the ink's shear viscosity and the microgel support bath's zero‐shear viscosity. By adjusting the flow rate during extrusion, the ink's shear viscosity is modulated, thus controlling the extent of microscopic porosity independent of the ink composition. For covalently crosslinked collagen, printing into support baths comprised of gelatin microgels (15‐50 µm) results in large pores (≈40 µm) that allow human corneal mesenchymal stromal cells (MSCs) to readily spread, while control samples of cast collagen or collagen printed in non‐granular support baths do not allow cell spreading. Taken together, these data demonstrate a new method to impart controlled microscale porosity into 3D printed hydrogels using granular microgel support baths. 
    more » « less
  5. Abstract 3D bioprinting has enabled the fabrication of tissue‐mimetic constructs with freeform designs that include living cells. In the development of new bioprinting techniques, the controlled use of diffusion has become an emerging strategy to tailor the properties and geometry of printed constructs. Specifically, the diffusion of molecules with specialized functions, including crosslinkers, catalysts, growth factors, or viscosity‐modulating agents, across the interface of printed constructs will directly affect material properties such as microstructure, stiffness, and biochemistry, all of which can impact cell phenotype. For example, diffusion‐induced gelation is employed to generate constructs with multiple materials, dynamic mechanical properties, and perfusable geometries. In general, these diffusion‐based bioprinting strategies can be categorized into those based on inward diffusion (i.e., into the printed ink from the surrounding air, solution, or support bath), outward diffusion (i.e., from the printed ink into the surroundings), or diffusion within the printed construct (i.e., from one zone to another). This review provides an overview of recent advances in diffusion‐based bioprinting strategies, discusses emerging methods to characterize and predict diffusion in bioprinting, and highlights promising next steps in applying diffusion‐based strategies to overcome current limitations in biofabrication. 
    more » « less
  6. Abstract While the human body has many different examples of perfusable structures with complex geometries, biofabrication methods to replicate this complexity are still lacking. Specifically, the fabrication of self‐supporting, branched networks with multiple channel diameters is particularly challenging. Herein, the Gelation of Uniform Interfacial Diffusant in Embedded 3D Printing (GUIDE‐3DP) approach for constructing perfusable networks of interconnected channels with precise control over branching geometries and vessel sizes is presented. To achieve user‐specified channel dimensions, this technique leverages the predictable diffusion of cross‐linking reaction‐initiators released from sacrificial inks printed within a hydrogel precursor. The versatility of GUIDE‐3DP to be adapted for use with diverse physicochemical cross‐linking mechanisms is demonstrated by designing seven printable material systems. Importantly, GUIDE‐3DP allows for the independent tunability of both the inner and outer diameters of the printed channels and the ability to fabricate seamless junctions at branch points. This 3D bioprinting platform is uniquely suited for fabricating lumenized structures with complex shapes characteristic of multiple hollow vessels throughout the body. As an exemplary application, the fabrication of vasculature‐like networks lined with endothelial cells is demonstrated. GUIDE‐3DP represents an important advance toward the fabrication of self‐supporting, physiologically relevant networks with intricate and perfusable geometries. 
    more » « less
  7. Abstract Mechanically tunable hydrogels are attractive platforms for 3D cell culture, as hydrogel stiffness plays an important role in cell behavior. Traditionally, hydrogel stiffness has been controlled through altering either the polymer concentration or the stoichiometry between crosslinker reactive groups. Here, an alternative strategy based upon tuning the hydrophilicity of an elastin‐like protein (ELP) is presented. ELPs undergo a phase transition that leads to protein aggregation at increasing temperatures. It is hypothesized that increasing this transition temperature through bioconjugation with azide‐containing molecules of increasing hydrophilicity will allow direct control of the resulting gel stiffness by making the crosslinking groups more accessible. These azide‐modified ELPs are crosslinked into hydrogels with bicyclononyne‐modified hyaluronic acid (HA‐BCN) using bioorthogonal, click chemistry, resulting in hydrogels with tunable storage moduli (100–1000 Pa). Human mesenchymal stromal cells (hMSCs), human umbilical vein endothelial cells (HUVECs), and human neural progenitor cells (hNPCs) are all observed to alter their cell morphology when encapsulated within hydrogels of varying stiffness. Taken together, the use of protein hydrophilicity as a lever to tune hydrogel mechanical properties is demonstrated. These hydrogels have tunable moduli over a stiffness range relevant to soft tissues, support the viability of encapsulated cells, and modify cell spreading as a consequence of gel stiffness. 
    more » « less
  8. Abstract Mechanical cues from the extracellular matrix (ECM) regulate vascular endothelial cell (EC) morphology and function. Since naturally derived ECMs are viscoelastic, cells respond to viscoelastic matrices that exhibit stress relaxation, in which a cell‐applied force results in matrix remodeling. To decouple the effects of stress relaxation rate from substrate stiffness on EC behavior, we engineered elastin‐like protein (ELP) hydrogels in which dynamic covalent chemistry (DCC) was used to crosslink hydrazine‐modified ELP (ELP‐HYD) and aldehyde/benzaldehyde‐modified polyethylene glycol (PEG‐ALD/PEG‐BZA). The reversible DCC crosslinks in ELP‐PEG hydrogels create a matrix with independently tunable stiffness and stress relaxation rate. By formulating fast‐relaxing or slow‐relaxing hydrogels with a range of stiffness (500–3300 Pa), we examined the effect of these mechanical properties on EC spreading, proliferation, vascular sprouting, and vascularization. The results show that both stress relaxation rate and stiffness modulate endothelial spreading on two‐dimensional substrates, on which ECs exhibited greater cell spreading on fast‐relaxing hydrogels up through 3 days, compared with slow‐relaxing hydrogels at the same stiffness. In three‐dimensional hydrogels encapsulating ECs and fibroblasts in coculture, the fast‐relaxing, low‐stiffness hydrogels produced the widest vascular sprouts, a measure of vessel maturity. This finding was validated in a murine subcutaneous implantation model, in which the fast‐relaxing, low‐stiffness hydrogel produced significantly more vascularization compared with the slow‐relaxing, low‐stiffness hydrogel. Together, these results suggest that both stress relaxation rate and stiffness modulate endothelial behavior, and that the fast‐relaxing, low‐stiffness hydrogels supported the highest capillary density in vivo. 
    more » « less
  9. Abstract The encapsulation of cells within gel‐phase materials to form bioinks offers distinct advantages for next‐generation 3D bioprinting. 3D bioprinting has emerged as a promising tool for patterning cells, but the technology remains limited in its ability to produce biofunctional, tissue‐like constructs due to a dearth of materials suitable for bioinks. While early demonstrations commonly used viscous polymers optimized for printability, these materials often lacked cell compatibility and biological functionality. In response, advanced materials that exist in the gel phase during the entire printing process are being developed, since hydrogels are uniquely positioned to both protect cells during extrusion and provide biological signals to embedded cells as the construct matures during culture. Here, an overview of the design considerations for gel‐phase materials as bioinks is presented, with a focus on their mechanical, biochemical, and dynamic gel properties. Current challenges and opportunities that arise due to the fact that bioprinted constructs are active, living hydrogels composed of both acellular and cellular components are also evaluated. Engineering hydrogels with consideration of cells as an intrinsic component of the printed bioink will enable control over the evolution of the living construct after printing to achieve greater biofunctionality. 
    more » « less