Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Batch systems face issues with workloads comprising millions of tasks with short runtimes—scheduling is most efficient for long-running jobs. In addition, the nature of heterogeneous computing systems makes task bundling impractical. Building on HTCondor, the Event Workflow Management System (EWMS) provides an efficient solution to thrive with both paradigms, while featuring user-friendly and self-healing principles. Here, we describe this method, its implementation, and a real-world application.more » « lessFree, publicly-accessible full text available July 18, 2026
-
De_Vita, R; Espinal, X; Laycock, P; Shadura, O (Ed.)The IceCube Neutrino Observatory is a cubic kilometer neutrino telescope located at the geographic South Pole. To accurately and promptly reconstruct the arrival direction of candidate neutrino events for Multi-Messenger Astrophysics use cases, IceCube employs Skymap Scanner workflows managed by the SkyDriver service. The Skymap Scanner performs maximum-likelihood tests on individual pixels generated from the Hierarchical Equal Area isoLatitude Pixelation (HEALPix) algorithm. Each test is computationally independent, which allows for massive parallelization. This workload is distributed using the Event Workflow Management System (EWMS)—a message-based workflow management system designed to scale to trillions of pixels per day. SkyDriver orchestrates multiple distinct Skymap Scanner workflows behind a REST interface, providing an easy-to-use reconstruction service for real-time candidate, cataloged, and simulated events. Here, we outline the SkyDriver service technique and the initial development of EWMS.more » « less
-
The IceCube realtime alert system has been operating since 2016. It provides prompt alerts on high-energy neutrino events to the astroparticle physics community. The localization regions for the incoming direction of neutrinos are published through NASA's Gamma-ray Coordinate Network (GCN). The IceCube realtime system consists of infrastructure dedicated to the selection of alert events, the reconstruction of their topology and arrival direction, the calculation of directional uncertainty contours and the distribution of the event information through public alert networks. Using a message-based workflow management system, a dedicated software (SkyDriver) provides a representational state transfer (REST) interface to parallelized reconstruction algorithms. In this contribution, we outline the improvements of the internal infrastructure of the IceCube realtime system that aims to streamline the internal handling of neutrino events, their distribution to the SkyDriver interface, the collection of the reconstruction results as well as their conversion into human- and machine-readable alerts to be publicly distributed through different alert networks. An approach for the long-term storage and cataloging of alert events according to findability, accessibility, interoperability and reusability (FAIR) principles is outlined.more » « less
An official website of the United States government
