skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2104068

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Automatic differentiation (AutoDiff) in machine learning is largely restricted to expressions used for neural networks (NN), with the depth rarely exceeding a few tens of layers. Compared to NN, numerical simulations typically involve iterative algorithms like time steppers that lead to millions of iterations. Even for modest-sized models, this may yield infeasible memory requirements when applying the adjoint method, also called backpropagation, to time-dependent problems. In this situation, checkpointing algorithms provide a trade-off between recomputation and storage. This paper presents the package Checkpointing.jl that leverages expression transformations in the programming language Julia and the package ChainRules.jl to automatically and transparently transform loop iterations into differentiated loops. The user may choose between various checkpointing algorithm schemes and storage devices. We describe the unique design of Checkpointing.jl and demonstrate its features on an automatically differentiated MPI implementation of Burgers’ equation on the Polaris cluster at the Argonne Leadership Computing Facility. 
    more » « less