- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0000000005000000
- More
- Availability
-
32
- Author / Contributor
- Filter by Author / Creator
-
-
Wang, Mu-Tao (5)
-
Chen, Po-Ning (3)
-
Wang, Ye-Kai (3)
-
Yau, Shing-Tung (3)
-
Tsai, Chung-Jun (2)
-
Tsui, Mao-Pei (2)
-
Paraizo, Daniel E (1)
-
Wald, Robert M (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 5, 2026
-
Tsai, Chung-Jun; Tsui, Mao-Pei; Wang, Mu-Tao (, Journal of Differential Geometry)Free, publicly-accessible full text available November 1, 2025
-
Chen, Po-Ning; Wang, Mu-Tao; Wang, Ye-Kai; Yau, Shing-Tung (, Pure and Applied Mathematics Quarterly)
-
Chen, Po-Ning; Paraizo, Daniel E; Wald, Robert M; Wang, Mu-Tao; Wang, Ye-Kai; Yau, Shing-Tung (, Classical and Quantum Gravity)Abstract We introduce a notion of ‘cross-section continuity’ as a criterion for the viability of definitions of angular momentum, J , at null infinity: If a sequence of cross-sections, , of null infinity converges uniformly to a cross-section , then the angular momentum, J n , on should converge to the angular momentum, J , on . The Dray–Streubel (DS) definition of angular momentum automatically satisfies this criterion by virtue of the existence of a well defined flux associated with this definition. However, we show that the one-parameter modification of the DS definition proposed by Compere and Nichols—which encompasses numerous other alternative definitions—does not satisfy cross-section continuity. On the other hand, we prove that the Chen–Wang–Yau definition does satisfy the cross-section continuity criterion.more » « less
-
Chen, Po-Ning; Wang, Mu-Tao; Wang, Ye-Kai; Yau, Shing-Tung (, Communications in mathematical physics)
An official website of the United States government
