skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2104383

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2026
  2. In this paper, a micro-to-macro multiscale approach with peridynamics is proposed to study metal-ceramic composites. Since the volume fraction varies in the spatial domain, these composites are called spatially tailored materials (STMs). Microstructure uncertainties, including porosity, are considered at the microscale when conducting peridynamic modeling and simulation. The collected dataset is used to train probabilistic machine learning models via Gaussian process regression, which can stochastically predict material properties. The machine learning models play a role in passing the information from the microscale to the macroscale. Then, at the macroscale, peridynamics is employed to study the mechanics of STM structures with various volume fraction distributions. 
    more » « less