skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2104437

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Oceanic detachment fault systems are characteristic of slow‐spreading mid‐ocean ridges, where reduced magma supply leads to increased extension by faulting and exhumation of oceanic core complexes (OCCs). OCCs have complicated structure reflecting the interplay between magmatic, hydrothermal, and tectonic processes. We use microearthquake data from a 9‐month ocean bottom seismometer deployment to image deformation structures in the Rainbow massif on the Mid‐Atlantic Ridge. Using a machine‐learning enabled workflow to obtain an earthquake catalog containing 68,000 events, we find seismicity occurred in distinct clusters that correlate with previously imaged velocity anomalies and dipping subsurface reflections. Our results are consistent with a dipping alteration front within the massif overlying late‐stage intrusions and suggest a transpressional fault accommodates a non‐transform offset north of the massif. Our results demonstrate OCCs continue to deform in a complex way after a detachment fault has been abandoned due to combined effects of tectonic stresses, magmatism, and alteration. 
    more » « less