Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 1, 2025
-
Free, publicly-accessible full text available April 6, 2025
-
The relativistic Vlasov-Maxwell-Landau (r-VML) system and the relativistic Landau (r-LAN) equation are fundamental models that describe the dynamics of an electron gas. In this paper, we introduce a novel weighted energy method and establish the validity of the Hilbert expansion for the one-species r-VML system and r-LAN equation. As the Knudsen number shrinks to zero, we rigorously demonstrate the relativistic Euler-Maxwell limit and relativistic Euler limit, respectively. This successfully resolves the long-standing open problem regarding the hydrodynamic limits of Landau-type equations.
Free, publicly-accessible full text available March 12, 2025 -
Free, publicly-accessible full text available January 1, 2025
-
Abstract We show that solutions to the Ablowitz–Ladik system converge to solutions of the cubic nonlinear Schrödinger equation for merely L 2 initial data. Furthermore, we consider initial data for this lattice model that excites Fourier modes near both critical points of the discrete dispersion relation and demonstrate convergence to a decoupled system of nonlinear Schrödinger equations.more » « less