skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2105149

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT We describe the synthesis and characterization of supramolecular networks based on charge‐assisted hydrogen bonding interactions of guanidinium and oxyanion functionalities. Although they are constructed entirely of small‐molecule components, these materials display properties such as a glass transition and time‐ and temperature‐dependent viscoelastic rheological behavior. These properties can be tuned by the choice of each network component:Tgvaries by over 50°C in the studied networks, and relaxation times scaled with changes toTg. However, these supramolecular materials are inherently degradable and thermally reversible as no covalent macromolecular structure is formed. 
    more » « less
  2. This work describes the effect of varying crosslink density and plasticizer loading on covalent adaptable networks that have equal amounts of reactive functionalities. 
    more » « less
    Free, publicly-accessible full text available December 17, 2025