skip to main content


Search for: All records

Award ID contains: 2105401

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Magnetic skyrmions exhibit unique, technologically relevant pseudo‐particle behaviors which arise from their topological protection, including well‐defined, 3D dynamic modes that occur at microwave frequencies. During dynamic excitation, spin waves are ejected into the interstitial regions between skyrmions, creating the magnetic equivalent of a turbulent sea. However, since the spin waves in these systems have a well‐defined length scale, and the skyrmions are on an ordered lattice, ordered structures from spin‐wave interference can precipitate from the chaos. This work uses small‐angle neutron scattering (SANS) to capture the dynamics in hybrid skyrmions and investigate the spin‐wave structure. Performing simultaneous ferromagnetic resonance and SANS, the diffraction pattern shows a large increase in low‐angle scattering intensity, which is present only in the resonance condition. This scattering pattern is best fit using a mass fractal model, which suggests the spin waves form a long‐range fractal network. The fractal structure is constructed of fundamental units with a size that encodes the spin‐wave emissions and are constrained by the skyrmion lattice. These results offer critical insights into the nanoscale dynamics of skyrmions, identify a new dynamic spin‐wave fractal structure, and demonstrate SANS as a unique tool to probe high‐speed dynamics.

     
    more » « less
  2. Abstract

    Herein, the experimental observation of micrometer‐scale magnetic skyrmions at room temperature in several Pt/Co‐based thin film heterostructures designed to possess low exchange stiffness, perpendicular magnetic anisotropy, and a modest interfacial Dzyaloshinskii–Moriya interaction (iDMI) is reported. It is found both experimentally and by micromagnetic and analytic modeling that a low exchange stiffness and modest iDMI eliminates the energetic penalty associated with forming domain walls in thin films. When the domain wall energy density approaches negative values, the remanent morphology transitions from a uniform state to labyrinthine stripes. A low exchange stiffness, indicated by a sub‐400 K Curie temperature, is achieved in Pt/Co, Pt/Co/Ni, and Pt/Co/Ni/Re structures by reducing the Co thickness to the ultrathin limit (<0.3 nm). Similar effects occur in thicker Pt/Co/NixCu1−xstructures when the Ni layer is alloyed with Cu. At this transition in domain morphology, skyrmion phases are stabilized by small (<1 mT), perpendicular magnetic fields, and skyrmion motion in response to spin–orbit torque is observed. While the temperature and thickness‐induced morphological phase transitions observed are similar to the well‐studied spin reorientation transition that occurs in the ultrathin limit, the underlying energy balances are substantially modified by the presence of an iDMI.

     
    more » « less
  3. Free, publicly-accessible full text available May 1, 2024