skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2105525

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We consider the question of when the operation of contact surgery with positive surgery coefficient, along a knot K K in a contact 3-manifold Y Y , gives rise to a weakly fillable contact structure. We show that this happens if and only if Y Y itself is weakly fillable, and K K is isotopic to the boundary of a properly embedded symplectic disk inside a filling of Y Y . Moreover, if Y Y’ is a contact manifold arising from positive contact surgery along K K , then any filling of Y Y’ is symplectomorphic to the complement of a suitable neighborhood of such a disk in a filling of Y Y . Using this result we deduce several necessary conditions for a knot in the standard 3-sphere to admit a fillable positive surgery, such as quasipositivity and equality between the slice genus and the 4-dimensional clasp number, and we give a characterization of such knots in terms of a quasipositive braid expression. We show that knots arising as the closure of a positive braid always admit a fillable positive surgery, as do knots that have lens space surgeries, and suitable satellites of such knots. In fact the majority of quasipositive knots with up to 10 crossings admit a fillable positive surgery. On the other hand, in general, (strong) quasipositivity, positivity, or Lagrangian fillability need not imply a knot admits a fillable positive contact surgery. 
    more » « less
  2. We consider homologically essential simple closed curves on Seifert surfaces of genus one knots in S3, and in particular those that are unknotted or slice in S3. We completely characterize all such curves for most twist knots: they are either positive or negative braid closures; moreover, we determine exactly which of those are unknotted. A surprising consequence of our work is that the figure eight knot admits infinitely many unknotted essential curves up to isotopy on its genus one Seifert surface, and those curves are enumerated by Fibonacci numbers. On the other hand, we prove that many twist knots admit homologically essential curves that cannot be positive or negative braid closures. Indeed, among those curves, we exhibit an example of a slice but not unknotted homologically essential simple closed curve. We further investigate our study of unknotted essential curves for arbitrary Whitehead doubles of non-trivial knots, and obtain that there is a precisely one unknotted essential simple closed curve in the interior of the doubles’ standard genus one Seifert surface. As a consequence of all these we obtain many new examples of 3-manifolds that bound contractible 4-manifolds. 
    more » « less
  3. Viewing the BRAID invariant as a generator of link Floer homology, we generalize work of Baldwin–Vela-Vick to obtain rank bounds on the next-to-top grading of knot Floer homology. These allow us to classify links with knot Floer homology of rank at most eight and prove a variant of a classification of links with Khovanov homology of low rank due to Xie–Zhang. In another direction, we use a variant of Ozsváth–Szabó's classification ofE_2collapsed\mathbb{Z}\oplus\mathbb{Z}filtered chain complexes to show that knot Floer homology detectsT(2,8)andT(2,10). Combining these techniques with the spectral sequences of Batson–Seed, Dowlin, and Lee, we can show that Khovanov homology likewise detectsT(2,8)andT(2,10). 
    more » « less