skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2105878

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We propose a new formula for the entropy of a dynamical black hole—valid to leading order for perturbations off of a stationary black hole background—in an arbitrary classical diffeomorphism covariant Lagrangian theory of gravity in n dimensions. In stationary eras, this formula agrees with the usual Noether charge formula, but in nonstationary eras, we obtain a nontrivial correction term. In particular, in general relativity, our formula for the entropy of a dynamical black hole differs from the standard Bekenstein-Hawking formula A / 4 by a term involving the integral of the expansion of the null generators of the horizon. We show that, to leading perturbative order, our dynamical entropy in general relativity is equal to 1 / 4 of the area of the apparent horizon. Our formula for entropy in a general theory of gravity is obtained from the requirement that a “local physical process version” of the first law of black hole thermodynamics hold for perturbations of a stationary black hole. It follows immediately that for first order perturbations sourced by external matter that satisfies the null energy condition, our entropy obeys the second law of black hole thermodynamics. For vacuum perturbations, the leading-order change in entropy occurs at second order in perturbation theory, and the second law is obeyed at leading order if and only if the modified canonical energy flux is positive (as is the case in general relativity but presumably would not hold in more general theories of gravity). Our formula for the entropy of a dynamical black hole differs from a formula proposed independently by Dong and by Wall. We obtain the general relationship between their formula and ours. We then consider the generalized second law in semiclassical gravity for first order perturbations of a stationary black hole. We show that the validity of the quantum null energy condition (QNEC) on a Killing horizon is equivalent to the generalized second law using our notion of black hole entropy but using a modified notion of von Neumann entropy for matter. On the other hand, the generalized second law for the Dong-Wall entropy is equivalent to an integrated version of QNEC, using the unmodified von Neumann entropy for the entropy of matter. Published by the American Physical Society2024 
    more » « less
    Free, publicly-accessible full text available July 1, 2025
  2. Abstract We introduce a notion of ‘cross-section continuity’ as a criterion for the viability of definitions of angular momentum, J , at null infinity: If a sequence of cross-sections, , of null infinity converges uniformly to a cross-section , then the angular momentum, J n , on should converge to the angular momentum, J , on . The Dray–Streubel (DS) definition of angular momentum automatically satisfies this criterion by virtue of the existence of a well defined flux associated with this definition. However, we show that the one-parameter modification of the DS definition proposed by Compere and Nichols—which encompasses numerous other alternative definitions—does not satisfy cross-section continuity. On the other hand, we prove that the Chen–Wang–Yau definition does satisfy the cross-section continuity criterion. 
    more » « less
  3. We show that if a massive body is put in a quantum superposition of spatially separated states, the mere presence of a black hole in the vicinity of the body will eventually destroy the coherence of the superposition. This occurs because, in effect, the gravitational field of the body radiates soft gravitons into the black hole, allowing the black hole to acquire “which path” information about the superposition. A similar effect occurs for quantum superpositions of electrically charged bodies. We provide estimates of the decoherence time for such quantum superpositions. We believe that the fact that a black hole will eventually decohere any quantum superposition may be of fundamental significance for our understanding of the nature of black holes in a quantum theory of gravity. 
    more » « less