skip to main content


Search for: All records

Award ID contains: 2106137

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Nitrogen (N) is a key limiting nutrient in terrestrial ecosystems, but there remain critical gaps in our ability to predict and model controls on soil N cycling. This may be in part due to lack of standardized sampling across broad spatial–temporal scales. Here, we introduce a continentally distributed, publicly available data set collected by the National Ecological Observatory Network (NEON) that can help fill these gaps. First, we detail the sampling design and methods used to collect and analyze soil inorganic N pool and net flux rate data from 47 terrestrial sites. We address methodological challenges in generating a standardized data set, even for a network using uniform protocols. Then, we evaluate sources of variation within the sampling design and compare measured net N mineralization to simulated fluxes from the Community Earth System Model 2 (CESM2). We observed wide spatiotemporal variation in inorganic N pool sizes and net transformation rates. Site explained the most variation in NEON’s stratified sampling design, followed by plots within sites. Organic horizons had larger pools and net N transformation rates than mineral horizons on a sample weight basis. The majority of sites showed some degree of seasonality in N dynamics, but overall these temporal patterns were not matched by CESM2, leading to poor correspondence between observed and modeled data. Looking forward, these data can reveal new insights into controls on soil N cycling, especially in the context of other environmental data sets provided by NEON, and should be leveraged to improve predictive modeling of the soil N cycle.

     
    more » « less
  2. Data Description:

    To improve SOC estimation in the United States, we upscaled site-based SOC measurements to the continental scale using multivariate geographic clustering (MGC) approach coupled with machine learning models. First, we used the MGC approach to segment the United States at 30 arc second resolution based on principal component information from environmental covariates (gNATSGO soil properties, WorldClim bioclimatic variables, MODIS biological variables, and physiographic variables) to 20 SOC regions. We then trained separate random forest model ensembles for each of the SOC regions identified using environmental covariates and soil profile measurements from the International Soil Carbon Network (ISCN) and an Alaska soil profile data. We estimated United States SOC for 0-30 cm and 0-100 cm depths were 52.6 + 3.2 and 108.3 + 8.2 Pg C, respectively.

    Files in collection (32):

    Collection contains 22 soil properties geospatial rasters, 4 soil SOC geospatial rasters, 2 ISCN site SOC observations csv files, and 4 R scripts

    gNATSGO TIF files:

    ├── available_water_storage_30arc_30cm_us.tif                   [30 cm depth soil available water storage]
    ├── available_water_storage_30arc_100cm_us.tif                 [100 cm depth soil available water storage]
    ├── caco3_30arc_30cm_us.tif                                                 [30 cm depth soil CaCO3 content]
    ├── caco3_30arc_100cm_us.tif                                               [100 cm depth soil CaCO3 content]
    ├── cec_30arc_30cm_us.tif                                                     [30 cm depth soil cation exchange capacity]
    ├── cec_30arc_100cm_us.tif                                                   [100 cm depth soil cation exchange capacity]
    ├── clay_30arc_30cm_us.tif                                                     [30 cm depth soil clay content]
    ├── clay_30arc_100cm_us.tif                                                   [100 cm depth soil clay content]
    ├── depthWT_30arc_us.tif                                                        [depth to water table]
    ├── kfactor_30arc_30cm_us.tif                                                 [30 cm depth soil erosion factor]
    ├── kfactor_30arc_100cm_us.tif                                               [100 cm depth soil erosion factor]
    ├── ph_30arc_100cm_us.tif                                                      [100 cm depth soil pH]
    ├── ph_30arc_100cm_us.tif                                                      [30 cm depth soil pH]
    ├── pondingFre_30arc_us.tif                                                     [ponding frequency]
    ├── sand_30arc_30cm_us.tif                                                    [30 cm depth soil sand content]
    ├── sand_30arc_100cm_us.tif                                                  [100 cm depth soil sand content]
    ├── silt_30arc_30cm_us.tif                                                        [30 cm depth soil silt content]
    ├── silt_30arc_100cm_us.tif                                                      [100 cm depth soil silt content]
    ├── water_content_30arc_30cm_us.tif                                      [30 cm depth soil water content]
    └── water_content_30arc_100cm_us.tif                                   [100 cm depth soil water content]

    SOC TIF files:

    ├──30cm SOC mean.tif                             [30 cm depth soil SOC]
    ├──100cm SOC mean.tif                           [100 cm depth soil SOC]
    ├──30cm SOC CV.tif                                 [30 cm depth soil SOC coefficient of variation]
    └──100cm SOC CV.tif                              [100 cm depth soil SOC coefficient of variation]

    site observations csv files:

    ISCN_rmNRCS_addNCSS_30cm.csv       30cm ISCN sites SOC replaced NRCS sites with NCSS centroid removed data

    ISCN_rmNRCS_addNCSS_100cm.csv       100cm ISCN sites SOC replaced NRCS sites with NCSS centroid removed data


    Data format:

    Geospatial files are provided in Geotiff format in Lat/Lon WGS84 EPSG: 4326 projection at 30 arc second resolution.

    Geospatial projection

    GEOGCS["GCS_WGS_1984", DATUM["D_WGS_1984", SPHEROID["WGS_1984",6378137,298.257223563]], PRIMEM["Greenwich",0], UNIT["Degree",0.017453292519943295]] (base) [jbk@theseus ltar_regionalization]$ g.proj -w GEOGCS["wgs84", DATUM["WGS_1984", SPHEROID["WGS_1984",6378137,298.257223563]], PRIMEM["Greenwich",0], UNIT["degree",0.0174532925199433]]

     

     
    more » « less
  3. Soil nitrous oxide (N 2 O) emissions are an important driver of climate change and are a major mechanism of labile nitrogen (N) loss from terrestrial ecosystems. Evidence increasingly suggests that locations on the landscape that experience biogeochemical fluxes disproportionate to the surrounding matrix (hot spots) and time periods that show disproportionately high fluxes relative to the background (hot moments) strongly influence landscape-scale soil N 2 O emissions. However, substantial uncertainties remain regarding how to measure and model where and when these extreme soil N 2 O fluxes occur. High-frequency datasets of soil N 2 O fluxes are newly possible due to advancements in field-ready instrumentation that uses cavity ring-down spectroscopy (CRDS). Here, we outline the opportunities and challenges that are provided by the deployment of this field-based instrumentation and the collection of high-frequency soil N 2 O flux datasets. While there are substantial challenges associated with automated CRDS systems, there are also opportunities to utilize these near-continuous data to constrain our understanding of dynamics of the terrestrial N cycle across space and time. Finally, we propose future research directions exploring the influence of hot moments of N 2 O emissions on the N cycle, particularly considering the gaps surrounding how global change forces are likely to alter N dynamics in the future. 
    more » « less