Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 13, 2025
-
Exploratory data analysis can uncover interesting data insights from data. Current methods utilize interestingness measures designed based on system designers' perspectives, thus inherently restricting the insights to their defined scope. These systems, consequently, may not adequately represent a broader range of user interests. Furthermore, most existing approaches that formulate interestingness measure are rule-based, which makes them inevitably brittle and often requires holistic re-design when new user needs are discovered.
This paper presents a data-driven technique for deriving an interestingness measure that learns from annotated data. We further develop an innovative annotation algorithm that significantly reduces the annotation cost, and an insight synthesis algorithm based on the Markov Chain Monte Carlo method for efficient discovery of interesting insights. We consolidate these ideas into a system. Our experimental outcomes and user studies demonstrate that DAISY can effectively discover a broad range of interesting insights, thereby substantially advancing the current state-of-the-art.
-
Diversity, group representation, and similar needs often apply to query results, which in turn require constraints on the sizes of various subgroups in the result set. Traditional relational queries only specify conditions as part of the query predicate(s), and do not support such restrictions on the output. In this paper, we study the problem of modifying queries to have the result satisfy constraints on the sizes of multiple subgroups in it. This problem, in the worst case, cannot be solved in polynomial time. Yet, with the help of provenance annotation, we are able to develop a query refinement method that works quite efficiently, as we demonstrate through extensive experiments.
-
Relational queries are commonly used to support decision making in critical domains like hiring and college admissions. For example, a college admissions officer may need to select a subset of the applicants for in-person interviews, who individually meet the qualification requirements (e.g., have a sufficiently high GPA) and are collectively demographically diverse (e.g., include a sufficient number of candidates of each gender and of each race). However, traditional relational queries only support selection conditions checked against each input tuple, and they do not support diversity conditions checked against multiple, possibly overlapping, groups of output tuples. To address this shortcoming, we present Erica, an interactive system that proposes minimal modifications for selection queries to have them satisfy constraints on the cardinalities of multiple groups in the result. We demonstrate the effectiveness of Erica using several real-life datasets and diversity requirements.
-
Selecting the best items in a dataset is a common task in data exploration. However, the concept of “best” lies in the eyes of the beholder: different users may consider different attributes more important and, hence, arrive at different rankings. Nevertheless, one can remove “dominated” items and create a “representative” subset of the data, comprising the “best items” in it. A Pareto-optimal representative is guaranteed to contain the best item of each possible ranking, but it can be a large portion of data. A much smaller representative can be found if we relax the requirement of including the best item for each user and, instead, just limit the users’ “regret”. Existing work defines regret as the loss in score by limiting consideration to the representative instead of the full dataset, for any chosen ranking function. However, the score is often not a meaningful number, and users may not understand its absolute value. Sometimes small ranges in score can include large fractions of the dataset. In contrast, users do understand the notion of rank ordering. Therefore, we consider items’ positions in the ranked list in defining the regret and propose the rank-regret representative as the minimal subset of the data containing at least one of the top-k of any possible ranking function. This problem is polynomial time solvable in 2D space but is NP-hard on 3 or more dimensions. We design a suite of algorithms to fulfill different purposes, such as whether relaxation is permitted on k, the result size, or both, whether a distribution is known, whether theoretical guarantees or practical efficiency is important, etc. Experiments on real datasets demonstrate that we can efficiently find small subsets with small rank-regrets.more » « less
-
The use of automated data-driven tools for decision-making has gained popularity in recent years. At the same time, the reported cases of algorithmic bias and discrimination increase as well, which in turn lead to an extensive study of algorithmic fairness. Numerous notions of fairness have been proposed, designed to capture different scenarios. These measures typically refer to a "protected group" in the data, defined using values of some sensitive attributes. Confirming whether a fairness definition holds for a given group is a simple task, but detecting groups that are treated unfairly by the algorithm may be computationally prohibitive as the number of possible groups is combinatorial. We present a method for detecting such groups efficiently for various fairness definitions. Our solution is implemented in a system called DENOUNCER, an interactive system that allows users to explore different fairness measures of a (trained) classifier for a given test data. We propose to demonstrate the usefulness of DENOUNCER using real-life data and illustrate the effectiveness of our method.more » « less