skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2106196

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The distinct molecular states — single molecule, assembly, and aggregate — of two ionic macromolecules, TPPE‐APOSS and TPE‐APOSS, are easily distinguishable through their tunable fluorescence emission wavelengths, which reflect variations in intermolecular distances. Both ionic macromolecules contain aggregation‐induced emission (AIE) active moieties whose emission wavelengths are directly correlated to their mutual distances in solution: far away from each other as individual molecules, maintaining a tunable and relatively long distance in electrostatic interactions‐controlled blackberry‐type assemblies (microphase separation), or approaching van der Waals close distance in aggregates (macrophase separation). Furthermore, within the blackberry assemblies, the emission wavelength decreases monotonically with increasing assembly size, indicative of shorter intermolecular distances at nanoscale. The emission changes of TPPE‐APOSS blackberry assemblies can even be visually distinguishable by eyes when their sizes and intermolecular distances are tuned. Molecular dynamics simulations further revealed that macromolecules are confined in various conformations by controllable intermolecular distances within the blackberry structure, thereby resulting in fluorescence emission with tunable wavelength. 
    more » « less
  2. Free, publicly-accessible full text available November 25, 2026
  3. Dumbbell- and bola-shaped amphiphiles are commonly expected to self-assemble into vesicles with condensed hydrophobic domains due to the dominant hydrophobic interaction. In this work, we examined the assemblies of the dumbbell-shaped AC60-AC60 amphiphile, with two carboxylic acid-functionalized fullerenes (AC60) polar head groups linked by an organic tether, and found that they assemble into hollow, spherical blackberry-type structures with porous surfaces, judged by their smaller assemblies in organic solvents with higher polarity and in aqueous solutions with high pH. We attribute the formation of blackberry structures to the organic tether that may be too short to fill up a condensed hydrophobic domain, as confirmed by all-atom simulations. This is further proved by noticing that several bola-type macromolecules with hydrophilic polyethylene glycol (PEG) chain being the linker and no hydrophobic components, AC60-PEG-AC60, can also self-assemble into hollow, spherical assemblies and demonstrate similar pH response as the assemblies from AC60-AC60 dumbbells. Therefore, we conclude that the driving force of the self-assembly for these dumbbell- or bola-shaped molecules is counterion-mediated attraction from the two AC60 head groups rather than the hydrophobic interaction due to the organic linkers. The so-formed blackberry structures here, as well-studied before in other systems, possess porous surfaces, making these charged amphiphiles a valuable model for designing stable nanocontainers with controllable porosity to the change of environment. 
    more » « less
  4. Macroionic solutions behave quite differently from small ions in solution or colloids in suspension, representing a previously missing and very important transitional stage, and can further be connected to solutions of polyelectrolytes, including proteins and DNA ( e.g. , similarities between “blackberry” formation and virus capsid formation). While synthesis and characterization have produced an immense database regarding the self-assembly behavior of macroions in solution resulting in many empirical rules and guidelines, theory and simulations are sorely needed to connect these disparate threads into a cohesive and coherent narrative of macroionic solution theory and to provide guidance for future work. We recently developed a versatile coarse-grained model specifically designed for modelling the self-assembly of macroions in solution and have answered some of the most outstanding questions about the solution behavior of macroions including the source of the attractive force between like-charged macroions and how they self-assemble into a 2D monolayer structure. 
    more » « less