skip to main content


Search for: All records

Award ID contains: 2106221

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Environmental factors are common forces driving infectious disease dynamics. We compared interannual and seasonal patterns of anthrax infections in two multihost systems in southern Africa: Etosha National Park, Namibia, and Kruger National Park, South Africa. Using several decades of mortality data from each system, we assessed possible transmission mechanisms behind anthrax dynamics, examining (1) within‐ and between‐species temporal case correlations and (2) associations between anthrax mortalities and environmental factors, specifically rainfall and the Normalized Difference Vegetation Index (NDVI), with empirical dynamic modeling. Anthrax cases in Kruger had wide interannual variation in case numbers, and large outbreaks seemed to follow a roughly decadal cycle. In contrast, outbreaks in Etosha were smaller in magnitude and occurred annually. In Etosha, the host species commonly affected remained consistent over several decades, although plains zebra (Equus quagga) became relatively more dominant. In Kruger, turnover of the main host species occurred after the 1990s, where the previously dominant host species, greater kudu (Tragelaphus strepsiceros), was replaced by impala (Aepyceros melampus). In both parks, anthrax infections showed two seasonal peaks, with each species having only one peak in a year. Zebra, springbok (Antidorcas marsupialis), wildebeest (Connochaetes taurinus), and impala cases peaked in wet seasons, while elephant (Loxodonta africana), kudu, and buffalo (Syncerus caffer) cases peaked in dry seasons. For common host species shared between the two parks, anthrax mortalities peaked in the same season in both systems. Among host species with cases peaking in the same season, anthrax mortalities were mostly synchronized, which implies similar transmission mechanisms or shared sources of exposure. Between seasons, outbreaks in one species may contribute to more cases in another species in the following season. Higher vegetation greenness was associated with more zebra and springbok anthrax mortalities in Etosha but fewer elephant cases in Kruger. These results suggest that host behavioral responses to changing environmental conditions may affect anthrax transmission risk, with differences in transmission mechanisms leading to multihost biseasonal outbreaks. This study reveals the dynamics and potential environmental drivers of anthrax in two savanna systems, providing a better understanding of factors driving biseasonal dynamics and outbreak variation among locations.

     
    more » « less
  2. Disease monitoring in free-ranging wildlife is a challenge and often relies on passive surveillance. Alternatively, proactive surveillance that relies on the detection of specific antibodies could give more reliable and timely insight into disease presence and prevalence in a population, especially if the evidence of disease occurs below detection thresholds for passive surveillance. Primary binding assays, like the indirect ELISA for antibody detection in wildlife, are hampered by a lack of species-specific conjugates. In this study, we developed anti-kudu ( Tragelaphus strepsiceros ) and anti-impala ( Aepyceros melampus ) immunoglobulin-specific conjugates in chickens and compared them to the binding of commercially available protein-G and protein-AG conjugates, using an ELISA-based avidity index. The conjugates were evaluated for cross-reaction with sera from other wild herbivores to assess future use in ELISAs. The developed conjugates had a high avidity of >70% against kudu and impala sera. The commercial conjugates (protein-G and protein-AG) had significantly low relative avidity (<20%) against these species. Eighteen other wildlife species demonstrated cross-reactivity with a mean relative avidity of >50% with the impala and kudu conjugates and <40% with the commercial conjugates. These results demonstrate that species-specific conjugates are important tools for the development and validation of immunoassays in wildlife and for the surveillance of zoonotic agents along the livestock-wildlife-human interface. 
    more » « less
    Free, publicly-accessible full text available July 11, 2024
  3. Background The distribution of resources can affect animal range sizes, which in turn may alter infectious disease dynamics in heterogenous environments. The risk of pathogen exposure or the spatial extent of outbreaks may vary with host range size. This study examined the range sizes of herbivorous anthrax host species in two ecosystems and relationships between spatial behavior and patterns of disease outbreaks for a multi-host environmentally transmitted pathogen. Methods We examined range sizes for seven host species and the spatial extent of anthrax outbreaks in Etosha National Park, Namibia and Kruger National Park, South Africa, where the main host species and numbers of cases differ. We evaluated host range sizes using the local convex hull method at different temporal scales, within-individual temporal range overlap, and relationships between ranging behavior and species contributions to anthrax cases in each park. We estimated the spatial extent of annual anthrax mortalities and evaluated whether the extent was correlated with case numbers of a given host species. Results Range size differences among species were not linearly related to anthrax case numbers. In Kruger the main host species had small range sizes and high range overlap, which may heighten exposure when outbreaks occur within their ranges. However, different patterns were observed in Etosha, where the main host species had large range sizes and relatively little overlap. The spatial extent of anthrax mortalities was similar between parks but less variable in Etosha than Kruger. In Kruger outbreaks varied from small local clusters to large areas and the spatial extent correlated with case numbers and species affected. Case numbers of secondary host species with larger range sizes were positively correlated with the spatial extent of outbreaks in both parks. Conclusions Our results provide new information on the spatiotemporal structuring of ranging movements of anthrax host species in two ecosystems. The results linking anthrax dynamics to host space use are correlative, yet suggest that, though partial and proximate, host range size and overlap may be contributing factors in outbreak characteristics for environmentally transmitted pathogens. 
    more » « less
  4. Datasets collected from monitored zebra anthrax carcass sites in Etosha National Park, Namibia, 2010-2021. One data file describes the anthrax mortality, soil characterization of the carcass sites and details on the types and timing of different sampling efforts at these sites. The other data file is counts of Bacillus anthracis spores in surface soils collected annually at these carcass sites. 
    more » « less
  5. Exposure and immunity to generalist pathogens differ among host species and vary across spatial scales. Anthrax, caused by a multi-host bacterial pathogen, Bacillus anthracis , is enzootic in Kruger National Park (KNP), South Africa and Etosha National Park (ENP), Namibia. These parks share many of the same potential host species, yet the main anthrax host in one (greater kudu ( Tragelaphus strepsiceros ) in KNP and plains zebra ( Equus quagga ) in ENP) is only a minor host in the other. We investigated species and spatial patterns in anthrax mortalities, B. anthracis exposure, and the ability to neutralize the anthrax lethal toxin to determine if observed host mortality differences between locations could be attributed to population-level variation in pathogen exposure and/or immune response. Using serum collected from zebra and kudu in high and low incidence areas of each park (18- 20 samples/species/area), we estimated pathogen exposure from anti-protective antigen (PA) antibody response using enzyme-linked immunosorbent assay (ELISA) and lethal toxin neutralization with a toxin neutralization assay (TNA). Serological evidence of pathogen exposure followed mortality patterns within each system (kudus: 95% positive in KNP versus 40% in ENP; zebras: 83% positive in ENP versus 63% in KNP). Animals in the high-incidence area of KNP had higher anti-PA responses than those in the low-incidence area, but there were no significant differences in exposure by area within ENP. Toxin neutralizing ability was higher for host populations with lower exposure prevalence, i.e., higher in ENP kudus and KNP zebras than their conspecifics in the other park. These results indicate that host species differ in their exposure to and adaptive immunity against B. anthracis in the two parks. These patterns may be due to environmental differences such as vegetation, rainfall patterns, landscape or forage availability between these systems and their interplay with host behavior (foraging or other risky behaviors), resulting in differences in exposure frequency and dose, and hence immune response. 
    more » « less
  6. null (Ed.)
    Bacillus anthracis, the causative agent of anthrax disease, is a worldwide threat to livestock, wildlife and public health. While analyses of genetic data from across the globe have increased our understanding of this bacterium’s population genomic structure, the influence of selective pressures on this successful pathogen is not well understood. In this study, we investigate the effects of antimicrobial resistance, phage diversity, geography and isolation source in shaping population genomic structure. We also identify a suite of candidate genes potentially under selection, driving patterns of diversity across 356 globally extant B. anthracis genomes. We report ten antimicrobial resistance genes and 11 different prophage sequences, resulting in the first large-scale documentation of these genetic anomalies for this pathogen. Results of random forest classification suggest genomic structure may be driven by a combination of antimicrobial resistance, geography and isolation source, specific to the population cluster examined. We found strong evidence that a recombination event linked to a gene involved in protein synthesis may be responsible for phenotypic differences between comparatively disparate populations. We also offer a list of genes for further examination of B. anthracis evolution, based on high-impact single nucleotide polymorphisms (SNPs) and clustered mutations. The information presented here sheds new light on the factors driving genomic structure in this notorious pathogen and may act as a road map for future studies aimed at understanding functional differences in terms of B. anthracis biogeography, virulence and evolution. 
    more » « less
  7. null (Ed.)
    When a transmission hotspot for an environmentally persistent pathogen establishes in otherwise high-quality habitat, the disease may exert a strong impact on a host population. However, fluctuating environmental conditions lead to heterogeneity in habitat quality and animal habitat preference, which may interrupt the overlap between selected and risky habitats. We evaluated spatio-temporal patterns in anthrax mortalities in a plains zebra ( Equus quagga ) population in Etosha National Park, Namibia, incorporating remote-sensing and host telemetry data. A higher proportion of anthrax mortalities of herbivores was detected in open habitats than in other habitat types. Resource selection functions showed that the zebra population shifted habitat selection in response to changes in rainfall and vegetation productivity. Average to high rainfall years supported larger anthrax outbreaks, with animals congregating in preferred open habitats, while a severe drought forced animals into otherwise less preferred habitats, leading to few anthrax mortalities. Thus, the timing of anthrax outbreaks was congruent with preference for open plains habitats and a corresponding increase in pathogen exposure. Given shifts in habitat preference, the overlap in high-quality habitat and high-risk habitat is intermittent, reducing the adverse consequences for the population. 
    more » « less
  8. null (Ed.)
    Disease outbreaks are a consequence of interactions among the three components of a host–parasite system: the infectious agent, the host and the environment. While virulence and transmission are widely investigated, most studies of parasite life-history trade-offs are conducted with theoretical models or tractable experimental systems where transmission is standardized and the environment controlled. Yet, biotic and abiotic environmental factors can strongly affect disease dynamics, and ultimately, host–parasite coevolution. Here, we review research on how environmental context alters virulence–transmission relationships, focusing on the off-host portion of the parasite life cycle, and how variation in parasite survival affects the evolution of virulence and transmission. We review three inter-related ‘approaches’ that have dominated the study of the evolution of virulence and transmission for different host–parasite systems: (i) evolutionary trade-off theory, (ii) parasite local adaptation and (iii) parasite phylodynamics. These approaches consider the role of the environment in virulence and transmission evolution from different angles, which entail different advantages and potential biases. We suggest improvements to how to investigate virulence–transmission relationships, through conceptual and methodological developments and taking environmental context into consideration. By combining developments in life-history evolution, phylogenetics, adaptive dynamics and comparative genomics, we can improve our understanding of virulence–transmission relationships across a diversity of host–parasite systems that have eluded experimental study of parasite life history. 
    more » « less