skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2106339

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2026
  2. Free, publicly-accessible full text available April 24, 2026
  3. The alignment of large language models (LLMs) with human values is critical as these models become increasingly integrated into various societal and decision-making processes. Traditional methods, such as reinforcement learning from human feedback (RLHF), achieve alignment by fine-tuning model parameters, but these approaches are often computationally expensive and impractical when models are frozen or inaccessible for parameter modification. In contrast, prompt optimization is a viable alternative to RLHF for LLM alignment. While the existing literature has shown empirical promise of prompt optimization, its theoretical underpinning remains under-explored. We address this gap by formulating prompt optimization as an optimization problem and try to provide theoretical insights into the optimality of such a framework. To analyze the performance of the prompt optimization, we study theoretical suboptimality bounds and provide insights in terms of how prompt optimization depends upon the given prompter and target model. We also provide empirical validation through experiments on various datasets, demonstrating that prompt optimization can effectively align LLMs, even when parameter fine-tuning is not feasible. 
    more » « less
    Free, publicly-accessible full text available April 11, 2026
  4. Free, publicly-accessible full text available April 6, 2026
  5. Free, publicly-accessible full text available April 6, 2026
  6. Free, publicly-accessible full text available March 19, 2026
  7. Robust Markov decision processes (MDPs) aim to find a policy that optimizes the worst-case performance over an uncertainty set of MDPs. Existing studies mostly have focused on the robust MDPs under the discounted reward criterion, leaving the ones under the average-reward criterion largely unexplored. In this paper, we develop the first comprehensive and systematic study of robust average-reward MDPs, where the goal is to optimize the long-term average performance under the worst case. Our contributions are four-folds: (1) we prove the uniform convergence of the robust discounted value function to the robust average-reward function as the discount factor γ goes to 1; (2) we derive the robust average-reward Bellman equation, characterize the structure of its solution set, and prove the equivalence between solving the robust Bellman equation and finding the optimal robust policy; (3) we design robust dynamic programming algorithms, and theoretically characterize their convergence to the optimal policy; and (4) we design two model-free algorithms unitizing the multi-level Monte-Carlo approach, and prove their asymptotic convergence 
    more » « less