Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Effective file system testing relies on coverage to detect bugs and enhance reliability. We analyzed real file system bugs and found a weak correlation between code coverage, the most commonly used metric, and test effectiveness; many bugs were in covered code but remained undetected. Our study also showed that covering diverse file system inputs and outputs—system call arguments and return values—can be key to detecting the majority of observed bugs. We present input coverage and output coverage as new metrics for evaluating and improving file system testing, and have developed the IOCov framework for computing these metrics. Unlike existing system call tracers, IOCov computes coverage using only the calls relevant to testing, excluding unrelated ones that should not be counted. To demonstrate IOCov’s utility, we used it to extend the existing testing tool CrashMonkey into CM-IOCov, which achieves broader input coverage and more thorough detection of crash consistency bugs. Our experimental evaluation shows that IOCov com- putes input and output coverage accurately with minimal overhead. IOCov is applicable to different types of file system testing and can provide insights for improvement as well as identify untested cases based on coverage results. Moreover, the bugs found exclusively by CM-IOCov are 2.1 and 12.9 times more than those found exclusively by CrashMonkey on the 6.12 and 5.6 kernels, respectively, demonstrating the effectiveness of the IOCov-based coverage approach.more » « lessFree, publicly-accessible full text available September 8, 2026
-
Free, publicly-accessible full text available July 31, 2026
-
Free, publicly-accessible full text available July 31, 2026
-
Free, publicly-accessible full text available July 31, 2026
-
Initialization profoundly affects evolutionary algorithm (EA) efficacy by dictating search trajectories and convergence. This study introduces a hybrid initialization strategy combining empty-space search algorithm (ESA) and opposition-based learning (OBL). OBL initially generates a diverse population, subsequently augmented by ESA, which identifies under-explored regions. This synergy enhances population diversity, accelerates convergence, and improves EA performance on complex, high-dimensional optimization problems. Benchmark results demonstrate the proposed method's superiority in solution quality and convergence speed compared to conventional initialization techniques.more » « lessFree, publicly-accessible full text available July 14, 2026
-
Identifying knee and elbow points in performance curves is a critical task in various domains, including machine learning and system design. These points represent optimal trade-offs between cost and performance, facilitating efficient decision-making and resource allocation. However, accurately determining the knees and elbows in curves poses a significant challenge. To address this challenge, we introduce Kneeliverse, an open-source library dedicated to knee/elbow point detection. Kneeliverse incorporates a suite of well-established knee-detection algorithms, including Menger, L-method, Kneedle, and DFDT. Additionally, Kneeliverse extends these algorithms to detect multiple knees and elbows in complex curves, employing a recursive approach. Kneeliverse further includes Z-Method, a recently developed algorithm specifically designed for multi-knee detection.more » « lessFree, publicly-accessible full text available May 1, 2026
-
We present a comprehensive pipeline, integrated with a visual analytics system called GapMiner, capable of exploring and exploiting untapped opportunities within the empty regions of high-dimensional datasets. Our approach utilizes a novel Empty-Space Search Algorithm (ESA) to identify the center points of these uncharted voids, which represent reservoirs for potentially valuable new configurations. Initially, this process is guided by user interactions through GapMiner, which visualizes Empty-Space Configurations (ESCs) within the context of the dataset and allows domain experts to explore and refine ESCs for subsequent validation in domain experiments or simulations. These activities iteratively enhance the dataset and contribute to training a connected deep neural network (DNN). As training progresses, the DNN gradually assumes the role of identifying and validating high-potential ESCs, reducing the need for direct user involvement. Once the DNN achieves sufficient accuracy, it autonomously guides the exploration of optimal configurations by predicting performance and refining configurations through a combination of gradient ascent and improved empty-space searches. Domain experts were actively involved throughout the system’s development. Our findings demonstrate that this methodology consistently generates superior novel configurations compared to conventional randomization-based approaches. We illustrate its effectiveness in multiple case studies with diverse objectives.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Free, publicly-accessible full text available December 4, 2025
-
Durability features such as replication or erasure coding serve an important role in storage systems, enabling users to store data without fear of loss due to device failures. However, these durability features come with a cost, in terms of storage, network traffic, and computational overheads. For most data, loss is a catastrophic event and so these overheads are acceptable. However, some data tolerates low durability and does not need the high level of durability that most storage systems provide. Identifying the proper level of durability for a piece of data is difficult, especially since it is often not clear how to determine the cost of loss. For some data used in serverless applications, however, this cost is relatively straightforward to calculate: serverless functions are often required to be idempotent, meaning that the data produced by them can be re-created by re-running the function. The cost of losing a piece of data then is merely the cost of re-running the function that originally created the data. In this paper, we explore the tradeoff between the cost of storing data durably and the cost to re-create data. We focus on serverless data because its ability to be recreated makes it possible to assign a cost to its loss. We develop a mathematical model that relates compute costs, storage costs, and application-specific parameters to calculate the cost-optimal placement of data. We also develop an execution framework capable of handling lost data transparently, enabling applications to use lower-durability storage with no additional burden on the developer. Next, we show how different factors such as failure rate and compute costs affect the placement decision. We find that thanks to the relatively short lifetime of serverless data, the probability of data loss even on low-durability storage is fairly low. Finally, we use the model to place data for several applications, including a video-transcoding application and an image-assembly application. We show that our model can predict execution costs within 7% of actual execution costs, and can reduce storage costs by up to 3x while never exceeding baseline costs.more » « less
An official website of the United States government

Full Text Available