skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2106575

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present initial results from extremely well-resolved 3D magnetohydrodynamical simulations of idealized galaxy clusters, conducted using the AthenaPK code on the Frontier exascale supercomputer. These simulations explore the self-regulation of galaxy groups and cool-core clusters by cold gas-triggered active galactic nucleus (AGN) feedback incorporating magnetized kinetic jets. Our simulation campaign includes simulations of galaxy groups and clusters with a range of masses and intragroup and intracluster medium properties. In this paper, we present results that focus on a Perseus-like cluster. We find that the simulated clusters are self-regulating, with the cluster cores staying at a roughly constant thermodynamic state and AGN jet power staying at physically reasonable values (≃1044–1045erg s–1) for billions of years without a discernible duty cycle. These simulations also produce significant amounts of cold gas, with calculations having strong magnetic fields generally both promoting cold gas formation and allowing cold gas out to much larger cluster-centric radii (≃100 kpc) than simulations with weak or no fields (≃10 kpc), and also having more filamentary cold gas morphology. We find that AGN feedback significantly increases the strength of magnetic fields at the center of the cluster. We also find that the magnetized turbulence generated by the AGN results in turbulence where the velocity power spectra are tied to AGN activity, whereas the magnetic energy spectra are much less impacted after reaching a stationary state. 
    more » « less
    Free, publicly-accessible full text available July 21, 2026
  2. ABSTRACT Precipitation of cold gas due to thermal instability in both galaxy clusters and the circumgalactic medium may regulate active galactic nucleus feedback. We investigate thermal instability in idealized simulations of the circumgalactic medium with a parameter study of over 600 three-dimensional hydrodynamic simulations of stratified turbulence with cooling, each evolved for 10 Gyr. The entropy profiles are maintained in a steady state via an idealized ‘thermostat’ process, consistent with galaxy cluster entropy profiles. In the presence of external turbulent driving, we find cold gas precipitates, with a strong dependence whether the turbulent driving mechanism is solenoidal, compressive, or purely vertical. In the purely vertical turbulent driving regime, we find that significant cold gas may form when the cooling time to free-fall time $$t_{\rm cool} / t_{\text{ff}} \lesssim 5$$. Our simulations with a ratio of $$t_{\rm cool} / t_{\text{ff}} \sim 10$$ do not precipitate under any circumstances, perhaps because the thermostat mechanism we use maintains a significant non-zero entropy gradient. 
    more » « less
    Free, publicly-accessible full text available January 23, 2026
  3. Abstract The scaling of galaxy properties with halo mass suggests that feedback loops regulate star formation, but there is no consensus yet about how those feedback loops work. To help clarify discussions of galaxy-scale feedback, Paper I presented a very simple model for supernova feedback that it called the minimalist regulator model. This follow-up paper interprets that model and discusses its implications. The model itself is an accounting system that tracks all of the mass and energy associated with a halo’s circumgalactic baryons—the central galaxy’s atmosphere. Algebraic solutions for the equilibrium states of that model reveal that star formation in low-mass halos self-regulates primarily by expanding the atmospheres of those halos, ultimately resulting in stellar masses that are insensitive to the mass-loading properties of galactic winds. What matters most is the proportion of supernova energy that couples with circumgalactic gas. However, supernova feedback alone fails to expand galactic atmospheres in higher-mass halos. According to the minimalist regulator model, an atmospheric contraction crisis ensues, which may be what triggers strong black hole feedback. The model also predicts that circumgalactic medium properties emerging from cosmological simulations should depend largely on the specific energy of the outflows they produce, and we interpret the qualitative properties of several numerical simulations in light of that prediction. 
    more » « less
  4. Abstract This paper presents a new framework for understanding the relationship between a galaxy and its circumgalactic medium (CGM). It focuses on howimbalancesbetween heating and cooling cause either expansion or contraction of the CGM. It does this by trackingallof the mass and energy associated with a halo’s baryons, including their gravitational potential energy, even if feedback has pushed some of those baryons beyond the halo’s virial radius. We show how a star-forming galaxy’s equilibrium state can be algebraically derived within the context of this framework, and we analyze how the equilibrium star formation rate depends on supernova feedback. We consider the consequences of varying the mass loading parameter η M M ̇ wind / M ̇ * relating a galaxy’s gas mass outflow rate ( M ̇ wind ) to its star formation rate ( M ̇ * ) and obtain results that challenge common assumptions. In particular, we find that equilibrium star formation rates in low-mass galaxies are generally insensitive to mass loading, and when mass loading does matter, increasing it actually results inmorestar formation because more supernova energy is needed to resist atmospheric contraction. 
    more » « less
  5. ABSTRACT Radiative cooling and active galactic nucleus heating are thought to form a feedback loop that regulates the evolution of low-redshift cool-core galaxy clusters. Numerical simulations suggest that the formation of multiphase gas in the cluster core imposes a floor on the ratio of cooling time (tcool) to free-fall time (tff) at min(tcool/tff) ≈ 10. Observations of galaxy clusters show evidence for such a floor, and usually the cluster cores with min(tcool/tff) ≲ 30 contain abundant multiphase gas. However, there are important outliers. One of them is Abell 2029 (A2029), a massive galaxy cluster (M200 ≳ 1015 M⊙) with min(tcool/tff) ∼ 20, but little apparent multiphase gas. In this paper, we present high-resolution 3D hydrodynamic adaptive mesh refinement simulations of a cluster similar to A2029 and study how it evolves over a period of 1–2 Gyr. Those simulations suggest that A2029 self-regulates without producing multiphase gas because the mass of its central black hole ($${\sim} 5 \times 10^{10} \, \mathrm{ M}_\odot$$) is great enough for Bondi accretion of hot ambient gas to produce enough feedback energy to compensate for radiative cooling. 
    more » « less
  6. Abstract Quenching of star formation in the central galaxies of cosmological halos is thought to result from energy released as gas accretes onto a supermassive black hole. The same energy source also appears to lower the central density and raise the cooling time of baryonic atmospheres in massive halos, thereby limiting both star formation and black hole growth, by lifting the baryons in those halos to greater altitudes. One predicted signature of that feedback mechanism is a nearly linear relationship between the central black hole’s mass (MBH) and the original binding energy of the halo’s baryons. We present the increasingly strong observational evidence supporting a such a relationship, showing that it extends up to halos of massMhalo∼ 1014M. We then compare current observational constraints on theMBH–Mhalorelation with numerical simulations, finding that black hole masses in IllustrisTNG appear to exceed those constraints atMhalo< 1013Mand that black hole masses in EAGLE fall short of observations atMhalo∼ 1014M. A closer look at IllustrisTNG shows that quenching of star formation and suppression of black hole growth do indeed coincide with black hole energy input that lifts the halo’s baryons. However, IllustrisTNG does not reproduce the observedMBH–Mhalorelation because its black holes gain mass primarily through accretion that does not contribute to baryon lifting. We suggest adjustments to some of the parameters in the IllustrisTNG feedback algorithm that may allow the resulting black hole masses to reflect the inherent links between black hole growth, baryon lifting, and star formation among the massive galaxies in those simulations. 
    more » « less