skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2106745

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Sketching algorithms or sketches enable accurate network measurement results with low resource footprints. While emerging programmable switches are an attractive target to get these benefits, current implementations of sketches are either inefficient and/or infeasible on hardware. Our contributions in the paper are: (1) systematically analyzing the resource bottlenecks of existing sketch implementations in hardware; (2) identifying practical and correct-by-construction optimization techniques to tackle the identified bottlenecks; and (3) designing an easy-to-use library called SketchLib to help developers efficiently implement their sketch algorithms in switch hardware to benefit from these resource optimizations. Our evaluation on state-of-the-art sketches demonstrates that SketchLib reduces the hardware resource footprint up to 96% without impacting fidelity. 
    more » « less
  2. Network monitoring and measurement have always been critical components of network management. Recent developments in sketch-based monitoring techniques and the deployment opportunities arising from the increasing programmability of network elements (e.g., programmable switches, SmartNICs, and software switches) have made the possibility of accurate, detailed, network-wide telemetry tantalizingly within reach. However, the wide heterogeneity of the programmable hardware and dynamic changes in both resources available and resources needed for monitoring over time make existing approaches to network-wide monitoring impractical. We present HeteroSketch, a framework that consists of two main components: (1) a profiling tool that automatically quantifies the capabilities of arbitrary hardware by predicting their performance for sketching algorithms, and (2) an optimization framework that decides placement of measurement tasks and resource allocation for devices to meet monitoring goals while considering heterogeneous device capabilities. HeteroSketch enables optimized deployments for large networks (> 40,000 nodes) using a novel clustering approach and enables prompt responses to network topology, traffic, query, and resource dynamics. Our evaluation shows that HeteroSketch reduces resource overheads by 20-60% compared to prior art, while maintaining monitoring performance, coverage, and accuracy. 
    more » « less