skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2106987

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 15, 2025
  2. Deep neural networks (DNNs) have been shown to perform well on exclusive, multi-class classification tasks. However, when different classes have similar visual features, it becomes challenging for human annotators to differentiate them. This scenario necessitates the use of composite class labels. In this paper, we propose a novel framework called Hyper-Evidential Neural Network (HENN) that explicitly models predictive uncertainty due to composite class labels in training data in the context of the belief theory called Subjective Logic (SL). By placing a grouped Dirichlet distribution on the class probabilities, we treat predictions of a neural network as parameters of hyper-subjective opinions and learn the network that collects both single and composite evidence leading to these hyper-opinions by a deterministic DNN from data. We introduce a new uncertainty type called vagueness originally designed for hyper-opinions in SL to quantify composite classification uncertainty for DNNs. Our results demonstrate that HENN outperforms its state-of-the-art counterparts based on four image datasets. The code and datasets are available at: https://github.com/ Hugo101/HyperEvidentialNN. 
    more » « less
  3. Heat stress (HS) negatively affects animal productivity and welfare. The usage of wearable sensors to detect behavioral changes in ruminants undergoing HS has not been well studied. This study aimed to investigate changes in sheep’s behavior using a wearable sensor and explore how ambient temperature influenced the algorithm’s capacity to classify behaviors. Six sheep (Suffolk, Dorset, or Suffolk × Dorset) were assigned to 1 of 2 groups in a cross-over experimental design. Groups were assigned to one of two rooms where they were housed for 20d prior to switching rooms. The thermal environment within the rooms was altered five times per period. In the first room, the temperature began at a thermoneutral level and gradually increased before decreasing. Simultaneously, in the second room, the temperature began at hot temperatures and gradually decreased before increasing again. Physiological responses (respiratory rate, heart rate, and rectal temperature) were analyzed using a linear mixed-effects model. A random forest algorithm was developed to classify lying, standing, eating, and ruminating (while lying and standing). Thermal stress shifted daily animal behavior budgets, increasing total time spent standing in hot conditions (p = 0.036). Although models had a similar capacity to classify behaviors within a temperature range, their accuracy decreased when applied outside that range. Although wearable sensors may help classify behavioral shifts indicative of thermal stress, algorithms must be robustly derived across environments. 
    more » « less