skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2107070

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Fast radio bursts (FRBs) are millisecond-duration radio transients that serve as unique probes of ionizedextragalactic matter. We report the discovery and localization of two FRBs piercing the Andromeda galaxy (M31) with the realfast transient-detection system at the Very Large Array. These unique sightlines enable constraints on M31’s electron density distribution. We localized FRB 20230930A to a host galaxy at redshiftz= 0.0925 and FRB 20230506C to a host galaxy at redshiftz= 0.3896. After accounting for the dispersion contributions from the Milky Way, the host galaxies, and the intergalactic medium, we estimate M31’s contribution to be 26–239 pc cm−3toward FRB 20230930A and 51–366 pc cm−3toward FRB 20230506C, within the 90% credible interval (CI). By modeling the M31 disk’s contribution, we isolate the halo component and find that M31’s halo contributes 7–169 pc cm−3along FRB 20230930A (90% CI). The inferred values of DMM31,halofrom the FRBs are consistent with predictions from a modified Navarro–Frenk–White profile at the corresponding impact parameter. The cool and warm phase gas is unlikely to account for the DMM31,halounless the ionization fraction is as high as 90%. While limited to two sightlines, these results offer tentative evidence for the existence of a hot halo surrounding M31. We also discuss the potential contribution of other foreground structures, particularly in explaining the DM excess observed in FRB 20230506C. This work demonstrates how FRBs can be used to probe the circumgalactic medium of intervening galaxies. 
    more » « less
    Free, publicly-accessible full text available November 6, 2026
  2. ABSTRACT The light curves of radioactive transients, such as supernovae and kilonovae, are powered by the decay of radioisotopes, which release high-energy leptons through $$\beta ^+$$ and $$\beta ^-$$ decays. These leptons deposit energy into the expanding ejecta. As the ejecta density decreases during expansion, the plasma becomes collisionless, with particle motion governed by electromagnetic forces. In such environments, strong or turbulent magnetic fields are thought to confine particles, though the origin of these fields and the confinement mechanism have remained unclear. Using fully kinetic particle-in-cell (PIC) simulations, we demonstrate that plasma instabilities can naturally confine high-energy leptons. These leptons generate magnetic fields through plasma streaming instabilities, even in the absence of pre-existing fields. The self-generated magnetic fields slow lepton diffusion, enabling confinement, and transferring energy to thermal electrons and ions. Our results naturally explain the positron trapping inferred from late-time observations of thermonuclear and core-collapse supernovae. Furthermore, they suggest potential implications for electron dynamics in the ejecta of kilonovae. We also estimate synchrotron radio luminosities from positrons for Type Ia supernovae and find that such emission could only be detectable with next-generation radio observatories from a Galactic or local-group supernova in an environment without any circumstellar material. 
    more » « less
  3. ABSTRACT While nova eruptions produce some of the most common and dramatic dust formation episodes among astrophysical transients, the demographics of dust-forming novae remain poorly understood. Here, we present a statistical study of dust formation in 40 novae with high-quality optical/IR light curves, quantitatively distinguishing dust-forming from non-dust-forming novae while exploring the properties of the dust events. We find that 50–70 per cent of novae produce dust, significantly higher than previous estimates. Dust-forming novae can be separated from those that do not show dust formation by using the largest redward ($V-K$) colour change from peak visible brightness; ($V-J$) or ($V-H$) offer useful but less sensitive constraints. This makes optical+IR photometry a powerful tool to quantify dust formation in novae. We find that novae detected in GeV $$\gamma$$-rays by Fermi-LAT appear to form dust more often than novae not detected by Fermi, implying a possible connection between $$\gamma$$-ray-producing shocks and dust production. We also find that novae that evolve very quickly ($$t_2 < 10$$ d) are much less likely to form dust, in agreement with previous findings. We confirm a correlation between $$t_2$$ and the time of the onset of dust formation (which occurs $$\sim$$1 week–3 months after maximum light), but conclude that it is primarily an observational artefact driven by dust formation determining when a nova drops 2 mag below peak. The significant fraction of novae that form dust make them ideal laboratories in our Galactic backyard to tackle the puzzle of dust formation around explosive transients. 
    more » « less
  4. Abstract We present the Local GroupL-Band Survey, a Karl G. Jansky Very Large Array (VLA) survey producing the highest-quality 21 cm and 1–2 GHz radio continuum images to date, for the six VLA-accessible, star-forming, Local Group galaxies. Leveraging the VLA’s spectral multiplexing power, we simultaneously survey the 21 cm line at high 0.4 km s−1velocity resolution, the 1–2 GHz polarized continuum, and four OH lines. For the massive spiral M31, the dwarf spiral M33, and the dwarf irregular galaxies NGC 6822, IC 10, IC 1613, and the Wolf–Lundmark–Melotte Galaxy, we use all four VLA configurations and the Green Bank Telescope to reach angular resolutions of <5″ (10–20 pc) for the 21 cm line with <1020cm−2column density sensitivity, and even sharper views (<2″; 5–10 pc) of the continuum. Targeting these nearby galaxies (D ≲ 1 Mpc) reveals a sharp, resolved view of the atomic gas, including 21 cm absorption, and continuum emission from supernova remnants and Hiiregions. These data sets can be used to test theories of the abundance and formation of cold clouds, the driving and dissipation of interstellar turbulence, and the impact of feedback from massive stars and supernovae. Here, we describe the survey design and execution, scientific motivation, data processing, and quality assurance. We provide a first look at and publicly release the wide-field 21 cm Hidata products for M31, M33, and four dwarf irregular targets in the survey, which represent some of the highest-physical-resolution 21 cm observations of any external galaxies beyond the LMC and SMC. 
    more » « less
    Free, publicly-accessible full text available July 17, 2026
  5. Abstract We present a systematic study of the BVRI colours of novae over the course of their eruptions. Where possible, interstellar reddening was measured using the equivalent widths of Diffuse Interstellar Bands (DIBs). Some novae lack spectra with sufficient resolution and signal-to-noise ratios; therefore, we supplement as necessary with 3D and 2D dust maps. Utilising only novae with DIB- or 3D-map-based E(B − V), we find an average intrinsic (B − V)0 colour of novae at V-band light curve peak of 0.20 with a standard deviation of 0.31, based on 25 novae. When the light curve has declined by 2 magnitudes (t2), we find an average (B − V)0 = −0.03 with a standard deviation of 0.19. These average colours are consistent with previous findings, although the spreads are larger than previously found due to more accurate reddening estimates. We also examined the intrinsic (R − I)0 and (V − R)0 colours across our sample. These colours behave similarly to (B − V)0, except that the (V − R)0 colour gets redder after peak, likely due to the contributions of emission line flux. We searched for correlations between nova colours and t2, peak V-band absolute magnitude, and GeV γ-ray luminosity, but find no statistically significant correlations. Nova colours can therefore be used as standard “crayons” to estimate interstellar reddening from photometry alone, with 0.2–0.3 mag uncertainty. We present a novel Bayesian strategy for estimating distances to Galactic novae based on these E(B − V) measurements, independent of assumptions about luminosity, built using 3D dust maps and a stellar mass model of the Milky Way. 
    more » « less
    Free, publicly-accessible full text available March 11, 2026
  6. Abstract We present a long-period radio transient (GLEAM-X J0704−37) discovered to have an optical counterpart, consistent with a cool main-sequence star of spectral type M3. The radio periodicity occurs at the longest period yet found, 2.9 hr, and was discovered in archival low-frequency data from the Murchison Widefield Array. High time resolution observations from MeerKAT show that pulsations from the source display complex microstructure and high linear polarisation, suggesting a pulsar-like emission mechanism occurring due to strong, ordered magnetic fields. The timing residuals, measured over more than a decade, show tentative evidence of a ∼6 yr modulation. The high Galactic latitude of the system and the M-dwarf star excludes a magnetar interpretation, suggesting a more likely M-dwarf/white dwarf binary scenario for this system. 
    more » « less
  7. Abstract By using surface brightness maps of Tycho’s supernova remnant (SNR) in radio and X-rays, along with the properties of thermal and synchrotron emission, we have derived the postshock density and magnetic field (MF) strength distributions over the projection of this remnant. Our analysis reveals a density gradient oriented toward the northwest, while the MF strength gradient aligns with the Galactic plane, pointing eastward. Additionally, utilizing this MF map, we have derived the spatial distributions of the cutoff frequency and maximum energy of electrons in Tycho’s SNR. We further comment on the implications of these findings for interpreting the gamma-ray emission from Tycho’s SNR. 
    more » « less
  8. Abstract We measure the mass distribution of main-sequence (MS) companions to hot subdwarf B stars (sdBs) in post-common envelope binaries (PCEBs). We carried out a spectroscopic survey of 14 eclipsing systems (“HW Vir binaries”) with orbital periods of 3.8 < Porb < 12 hr, resulting in a well-understood selection function and a near-complete sample of HW Vir binaries withG < 16. We constrain companion masses from the radial velocity curves of the sdB stars. The companion mass distribution peaks atMMS ≈ 0.15Mand drops off atMMS > 0.2M, with only two systems hosting companions above the fully convective limit. There is no correlation betweenPorbandMMSwithin the sample. A similar drop-off in the companion mass distribution of white dwarf (WD) + MS PCEBs has been attributed to disrupted magnetic braking (MB) below the fully convective limit. We compare the sdB companion mass distribution to predictions of binary evolution simulations with a range of MB laws. Because sdBs have short lifetimes compared to WDs, explaining the lack of higher-mass MS companions to sdBs with disrupted MB requires MB to be boosted by a factor of 20–100 relative to MB laws inferred from the rotation evolution of single stars. We speculate that such boosting may be a result of irradiation-driven enhancement of the MS stars’ winds. An alternative possibility is that common envelope evolution favors low-mass companions in short-period orbits, but the existence of massive WD companions to sdBs with similar periods disfavors this scenario. 
    more » « less
  9. ABSTRACT V745 Sco is a Galactic symbiotic recurrent nova with nova eruptions in 1937, 1989, and 2014. We study the behaviour of V745 Sco at radio wavelengths (0.6–37 GHz), covering both its 1989 and 2014 eruptions and informed by optical, X-ray, and $$\gamma$$-ray data. The radio light curves are synchrotron-dominated. Surprisingly, compared to expectations for synchrotron emission from explosive transients such as radio supernovae, the light curves spanning 0.6–37 GHz all peak around the same time ($$\sim$$18–26 d after eruption) and with similar flux densities (5–9 mJy). We model the synchrotron light curves as interaction of the nova ejecta with the red giant wind, but find that simple spherically symmetric models with wind-like circumstellar material (CSM) cannot explain the radio light curve. Instead, we conclude that the shock suddenly breaks out of a dense CSM absorbing screen around 20 d after eruption, and then expands into a relatively low-density wind ($$\dot{M}_{out} \approx 10^{-9}\!-\!10^{-8}$$ M$$_{\odot }$$ yr$$^{-1}$$ for $$v_w = 10$$ km s$$^{-1}$$) out to $$\sim$$1 yr post-eruption. The dense, close-in CSM may be an equatorial density enhancement or a more spherical red giant wind with $$\dot{M}_{in} \approx [5\!-\!10] \times 10^{-7}$$ M$$_{\odot }$$ yr$$^{-1}$$, truncated beyond several $$\times 10^{14}$$ cm. The outer lower-density CSM would not be visible in typical radio observations of Type Ia supernovae: V745 Sco cannot be ruled out as a Type Ia progenitor based on CSM constraints alone. Complementary constraints from the free–free radio optical depth and the synchrotron luminosity imply the shock is efficient at accelerating relativistic electrons and amplifying magnetic fields, with $$\epsilon _e$$ and $$\epsilon _B \approx 0.01\!-\!0.1$$. 
    more » « less
  10. ABSTRACT Radio emission has been detected from tens of white dwarfs, in particular in accreting systems. Additionally, radio emission has been predicted as a possible outcome of a planetary system around a white dwarf. We searched for 3 GHz radio continuum emission in 846 000 candidate white dwarfs previously identified in Gaia using the Very Large Array Sky Survey (VLASS) Epoch 1 Quick Look Catalogue. We identified 13 candidate white dwarfs with a counterpart in VLASS within 2 arcsec. Five of those were found not to be white dwarfs in follow-up or archival spectroscopy, whereas seven others were found to be chance alignments with a background source in higher resolution optical or radio images. The remaining source, WDJ204259.71+152108.06, is found to be a white dwarf and M-dwarf binary with an orbital period of 4.1 d and long-term stochastic optical variability, as well as luminous radio and X-ray emission. For this binary, we find no direct evidence of a background contaminant, and a chance alignment probability of only ≈2 per cent. However, other evidence points to the possibility of an unfortunate chance alignment with a background radio and X-ray emitting quasar, including an unusually poor Gaia DR3 astrometric solution for this source. With at most one possible radio emitting white dwarf found, we conclude that strong (≳1–3 mJy) radio emission from white dwarfs in the 3 GHz band is virtually non-existent outside of interacting binaries. 
    more » « less