skip to main content


Search for: All records

Award ID contains: 2107107

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 18, 2024
  2. Free, publicly-accessible full text available April 30, 2024
  3. Uncertainty arises naturally in many application domains due to, e.g., data entry errors and ambiguity in data cleaning. Prior work in incomplete and probabilistic databases has investigated the semantics and efficient evaluation of ranking and top-k queries over uncertain data. However, most approaches deal with top-k and ranking in isolation and do represent uncertain input data and query results using separate, incompatible data models. We present an efficient approach for under- and over-approximating results of ranking, top-k, and window queries over uncertain data. Our approach integrates well with existing techniques for querying uncertain data, is efficient, and is to the best of our knowledge the first to support windowed aggregation. We design algorithms for physical operators for uncertain sorting and windowed aggregation, and implement them in PostgreSQL. We evaluated our approach on synthetic and real world datasets, demonstrating that it outperforms all competitors, and often produces more accurate results. 
    more » « less
  4. Sudeepa Roy and Jun Yang (Ed.)
    Data scientists use a wide variety of systems with a wide variety of user interfaces such as spreadsheets and notebooks for their data exploration, discovery, preprocessing, and analysis tasks. While this wide selection of tools offers data scientists the freedom to pick the right tool for each task, each of these tools has limitations (e.g., the lack of reproducibility of notebooks), data needs to be translated between tool-specific formats, and common functionality such as versioning, provenance, and dealing with data errors often has to be implemented for each system. We argue that rather than alternating between task-specific tools, a superior approach is to build multiple user-interfaces on top of a single incremental workflow / dataflow platform with built-in support for versioning, provenance, error & tracking, and data cleaning. We discuss Vizier, a notebook system that implements this approach, introduce the challenges that arose in building such a system, and highlight how our work on Vizier lead to novel research in uncertain data management and incremental execution of workflows. 
    more » « less
  5. In this work, we demonstrate CaJaDE (Context-Aware Join-Augmented Deep Explanations), a system that explains query results by augmenting provenance with contextual information from other related tables in the database. Given two query results whose difference the user wants to understand, we enumerate possible ways of joining the provenance (i.e., contributing input tuples) of these two query results with tuples from other relevant tables in the database that were not used in the query. We use patterns to concisely explain the difference between the augmented provenance of the two query results. CaJaDE, through a comprehensive UI, enables the user to formulate questions and explore explanations interactively. 
    more » « less
  6. Database systems use static analysis to determine upfront which data is needed for answering a query and use indexes and other physical design techniques to speed-up access to that data. However, for important classes of queries, e.g., HAVING and top-k queries, it is impossible to determine up-front what data is relevant. To overcome this limitation, we develop provenance-based data skipping (PBDS), a novel approach that generates provenance sketches to concisely encode what data is relevant for a query. Once a provenance sketch has been captured it is used to speed up subsequent queries. PBDS can exploit physical design artifacts such as indexes and zone maps. 
    more » « less