skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2107711

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT The processes responsible for the assembly of cold and warm gas in early-type galaxies (ETGs) are not well understood. We report on the multiwavelength properties of 15 non-central, nearby (z ≤ 0.008 89) ETGs primarily through Multi-Unit Spectroscopic Explorer (MUSE) and Chandra X-ray observations, to address the origin of their multiphase gas. The MUSE data reveal that 8/15 sources contain warm ionized gas traced by the H α emission line. The morphology of this gas is found to be filamentary in 3/8 sources: NGC 1266, NGC 4374, and NGC 4684, which is similar to that observed in many group and cluster-centred galaxies. All H α filamentary sources have X-ray luminosities exceeding the expected emission from the stellar population, suggesting the presence of diffuse hot gas, which likely cooled to form the cooler phases. The morphologies of the remaining 5/8 sources are rotating gas discs, not as commonly observed in higher mass systems. Chandra X-ray observations (when available) of the ETGs with rotating H α discs indicate that they are nearly void of hot gas. A mixture of stellar mass-loss and external accretion was likely the dominant channel for the cool gas in NGC 4526 and NGC 4710. These ETGs show full kinematic alignment between their stars and gas, and are fast rotators. The H α features within NGC 4191 (clumpy, potentially star-forming ring), NGC 4643, and NGC 5507 (extended structures) along with loosely overlapping stellar and gas populations allow us to attribute external accretion to be the primary formation channel of their cool gas. 
    more » « less
  2. ABSTRACT We present a multiwavelength observation of a cool core that does not appear to be associated with any galaxy, in a nearby cluster, Abell 1142. Its X-ray surface brightness peak of ≲2 keV is cooler than the ambient intracluster gas of ≳3 keV, and is offset from its brightest cluster galaxy (BCG) by 80 kpc in projection, representing the largest known cool core – BCG separation. This BCG-less cool core allows us to measure the metallicity of a cluster centre with a much-reduced contribution from the interstellar medium (ISM) of the BCG. XMM–Newton observation reveals a prominent Fe abundance peak of $$1.07^{+0.16}_{-0.15}$$ Z⊙ and an α/Fe abundance ratio close to the solar ratio, fully consistent with those found at the centres of typical cool core clusters. This finding hints that BCGs play a limited role in enriching the cluster centres. However, the discussion remains open, given that the α/Fe abundance ratios of the orphan cool core and the BCG ISM are not significantly different. Abell 1142 may have experienced a major merger more than 100 Myr ago, which has dissociated its cool core from the BCG. This implies that the Fe abundance peak in cool core clusters can be resilient to cluster mergers. Our recent Institut de Radio Astronomie Millimétrique 30-m observation did not detect any CO emission at its X-ray peak and we find no evidence for massive runaway cooling in the absence of recent active galactic nucleus feedback. The lack of a galaxy may contribute to an inefficient conversion of the ionized warm gas to the cold molecular gas. 
    more » « less
  3. Abstract We study active galactic nucleus (AGN) feedback in nearby (z< 0.35) galaxy clusters from the Planck Sunyaev–Zeldovich sample using Chandra observations. This nearly unbiased mass-selected sample includes both relaxed and disturbed clusters and may reflect the entire AGN feedback cycle. We find that relaxed clusters better follow the one-to-one relation of cavity power versus cooling luminosity, while disturbed clusters display higher cavity power for a given cooling luminosity, likely reflecting a difference in cooling and feedback efficiency. Disturbed clusters are also found to contain asymmetric cavities when compared to relaxed clusters, hinting toward the influence of the intracluster medium (ICM) “weather” on the distribution and morphology of the cavities. Disturbed clusters do not have fewer cavities than relaxed clusters, suggesting that cavities are difficult to disrupt. Thus, multiple cavities are a natural outcome of recurrent AGN outbursts. As in previous studies, we confirm that clusters with short central cooling times,tcool, and low central entropy values,K0, contain warm ionized (10,000 K) or cold molecular (<100 K) gas, consistent with ICM cooling and a precipitation/chaotic cold accretion scenario. We analyzed archival Multi-Unit Spectroscopic Explorer observations that are available for 18 clusters. In 11/18 of the cases, the projected optical line emission filaments appear to be located beneath or around the cavity rims, indicating that AGN feedback plays an important role in forming the warm filaments by likely enhancing turbulence or uplift. In the remaining cases (7/18), the clusters either lack cavities or their association of filaments with cavities is vague, suggesting alternative turbulence-driven mechanisms (sloshing/mergers) or physical time delays are involved. 
    more » « less
  4. ABSTRACT We present a systematic study of X-ray cavities using archival Chandra observations of nearby galaxy clusters selected by their Sunyaev–Zel’dovich (SZ) signature in the Planck survey, which provides a nearly unbiased mass-selected sample to explore the entire AGN feedback duty cycle. Based on X-ray image analysis, we report that 30 of the 164 clusters show X-ray cavities, which corresponds to a detection fraction of 18 per cent. After correcting for spatial resolution to match the high-$$\mathit{ z}$$ SPT-SZ sample, the detection fraction decreases to 9 per cent, consistent with the high-z sample, hinting that the AGN feedback has not evolved across almost 8 Gyrs. Our finding agrees with the lack of evolution of cool-core clusters fraction. We calculate the cavity power, Pcav, and find that most systems of our sample have enough AGN heating to offset the radiative losses of the intracluster medium. 
    more » « less
  5. ABSTRACT We report results from deep Suzaku and mostly snapshot Chandra observations of four nearby galaxy groups: MKW4, Antlia, RXJ1159+5531, and ESO3060170. Their peak temperatures vary over 2–3 keV, making them the smallest systems with gas properties constrained to their viral radii. The average Fe abundance in the outskirts (R > 0.25R200) of their intragroup medium is $$Z_{\rm Fe}=0.309\pm 0.018\, Z_\odot$$ with χ2 = 14 for 12 degrees of freedom, which is remarkably uniform and strikingly similar to that of massive galaxy clusters, and is fully consistent with the numerical predictions from the IllustrisTNG cosmological simulation. Our results support an early-enrichment scenario among galactic systems over an order of magnitude in mass, even before their formation. When integrated out to R200, we start to see a tension between the measured Fe content in intracluster medium and what is expected from supernovae yields. We further constrain their O, Mg, Si, S, and Ni abundances. The abundance ratios of those elements relative to Fe are consistent with the predictions (if available) from IllustrisTNG. Their Type Ia supernovae fraction varies between 14 per cent and 21 per cent. A pure core-collapsed supernovae enrichment at group outskirts can be ruled out. Their cumulative iron-mass-to-light ratios within R200 are half that of the Perseus cluster, which may imply that galaxy groups do not retain all of their enriched gas due to their shallower gravitational potential wells, or that groups and clusters may have different star formation histories. 
    more » « less
  6. Free, publicly-accessible full text available January 27, 2026
  7. The intracluster medium (ICM) in the centers of galaxy clusters is heavily influenced by the “feedback” from supermassive black holes (SMBHs). Feedback can drive turbulence in the ICM and turbulent dissipation can potentially be an important source of heating. Due to the limited spatial and spectral resolutions of X-ray telescopes, direct observations of turbulence in the hot ICM have been challenging. Recently, we developed a new method to measure turbulence in the ICM using multiphase filaments as tracers. These filaments are ubiquitous in cluster centers and can be observed at very high resolution using optical and radio telescopes. We study the kinematics of the filaments by measuring their velocity structure functions (VSFs) over a wide range of scales in the centers of ∼ 10 galaxy clusters. We find features of the VSFs that correlate with the SMBHs activities, suggesting that SMBHs are the main driver of gas motions in the centers of galaxy clusters. In all systems, the VSF is steeper than the classical Kolmogorov expectation and the slopes vary from system to system. One theoretical explanation is that the VSFs we have measured so far mostly reflect the motion of the driver (jets and bubbles) rather than the cascade of turbulence. We show that in Abell 1795, the VSF of the outer filaments far from the SMBH flattens on small scales to a Kolmogorov slope, suggesting that the cascade is only detectable farther out with the current telescope resolution. The level of turbulent heating computed at small scales is typically an order of magnitude lower than that estimated at the driving scale. Even though SMBH feedback heavily influences the kinematics of the ICM in cluster centers, the level of turbulence it drives is rather low, and turbulent heating can only offset ≲ 10% of the cooling loss, consistent with the findings of numerical simulations. 
    more » « less