Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Most diffuse baryons, including the circumgalactic medium (CGM) surrounding galaxies and the intergalactic medium (IGM) in the cosmic web, remain unmeasured and unconstrained. Fast radio bursts (FRBs) offer an unparalleled method to measure the electron dispersion measures (DMs) of ionized baryons. Their distribution can resolve the missing baryon problem and constrain the history of feedback theorized to impart significant energy to the CGM and IGM. We analyze the Cosmology and Astrophysics with Machine Learning Simulations using three suites, IllustrisTNG, SIMBA, and Astrid, each varying six parameters (two cosmological and four astrophysical feedback), for a total of 183 distinct simulation models. We find significantly different predictions between the fiducial models of the suites owing to their different implementations of feedback. SIMBA exhibits the strongest feedback, leading to the smoothest distribution of baryons and reducing the sight-line-to-sight-line variance in DMs betweenz= 0 and 1. Astrid has the weakest feedback and the largest variance. We calculate FRB CGM measurements as a function of galaxy impact parameter, with SIMBA showing the weakest DMs due to aggressive active galactic nucleus (AGN) feedback and Astrid the strongest. Within each suite, the largest differences are due to varying AGN feedback. IllustrisTNG shows the most sensitivity to supernova feedback, but this is due to the change in the AGN feedback strengths, demonstrating that black holes, not stars, are most capable of redistributing baryons in the IGM and CGM. We compare our statistics directly to recent observations, paving the way for the use of FRBs to constrain the physics of galaxy formation and evolution.more » « less
-
ABSTRACT The warm-hot intergalactic medium (WHIM) contains a significant portion of the ‘missing baryons’. Its detection in emission remains a challenge. Integral field spectrometers like X-IFU on board of the Athena satellite will secure WHIM detection in absorption and emission and, for the first time, allow us to investigate its physical properties. In our research, we use the CAMELS simulations to model the surface brightness maps of the OVII and OVIII ion lines and compute summary statistics like photon counts and 2-point correlation functions to infer the properties of the WHIM. Our findings confirm that detectable WHIM emission is primarily associated with galaxy haloes, and the properties of the WHIM show minimal evolution from z ∼ 0.5 to the present time. By exploring a wide range of parameters within the CAMELS suite, we investigate the sensitivity of WHIM properties to cosmology and energy feedback mechanisms influenced by active galactic nuclei and stellar activity. This approach allows us to separate the cosmological aspects from the baryonic processes and place constraints on the latter. Additionally, we provide forecasts for WHIM observations using a spectrometer similar to X-IFU. We anticipate detecting 1–3 WHIM emission lines per pixel and mapping the WHIM emission profile around haloes up to a few tens of arcminutes, surpassing the typical size of a WHIM emitter. Overall, our work demonstrates the potential of emission studies to probe the densest phase of the WHIM, shedding light on its physical properties and offering insights into the cosmological and baryonic processes at play.more » « less
-
Abstract We train graph neural networks to perform field-level likelihood-free inference using galaxy catalogs from state-of-the-art hydrodynamic simulations of the CAMELS project. Our models are rotational, translational, and permutation invariant and do not impose any cut on scale. From galaxy catalogs that only contain 3D positions and radial velocities of ∼1000 galaxies in tiny ( 25 h − 1 Mpc ) 3 volumes our models can infer the value of Ω m with approximately 12% precision. More importantly, by testing the models on galaxy catalogs from thousands of hydrodynamic simulations, each having a different efficiency of supernova and active galactic nucleus feedback, run with five different codes and subgrid models—IllustrisTNG, SIMBA, Astrid, Magneticum, SWIFT-EAGLE—we find that our models are robust to changes in astrophysics, subgrid physics, and subhalo/galaxy finder. Furthermore, we test our models on 1024 simulations that cover a vast region in parameter space—variations in five cosmological and 23 astrophysical parameters—finding that the model extrapolates really well. Our results indicate that the key to building a robust model is the use of both galaxy positions and velocities, suggesting that the network has likely learned an underlying physical relation that does not depend on galaxy formation and is valid on scales larger than ∼10 h −1 kpc.more » « less
-
Abstract We train graph neural networks on halo catalogs from Gadget N -body simulations to perform field-level likelihood-free inference of cosmological parameters. The catalogs contain ≲5000 halos with masses ≳10 10 h −1 M ⊙ in a periodic volume of ( 25 h − 1 Mpc ) 3 ; every halo in the catalog is characterized by several properties such as position, mass, velocity, concentration, and maximum circular velocity. Our models, built to be permutationally, translationally, and rotationally invariant, do not impose a minimum scale on which to extract information and are able to infer the values of Ω m and σ 8 with a mean relative error of ∼6%, when using positions plus velocities and positions plus masses, respectively. More importantly, we find that our models are very robust: they can infer the value of Ω m and σ 8 when tested using halo catalogs from thousands of N -body simulations run with five different N -body codes: Abacus, CUBEP 3 M, Enzo, PKDGrav3, and Ramses. Surprisingly, the model trained to infer Ω m also works when tested on thousands of state-of-the-art CAMELS hydrodynamic simulations run with four different codes and subgrid physics implementations. Using halo properties such as concentration and maximum circular velocity allow our models to extract more information, at the expense of breaking the robustness of the models. This may happen because the different N -body codes are not converged on the relevant scales corresponding to these parameters.more » « less
An official website of the United States government
