Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The baryon cycle is crucial for understanding galaxy formation, as gas inflows and outflows vary throughout a galaxy’s lifetime and affect its star formation rate. Despite the necessity of accretion for galaxy growth at high redshifts, direct observations of inflowing gas have proven elusive, especially atz ≳ 2. We present a spectroscopic analysis of a galaxy at redshiftz= 2.45, which exhibits signs of inflow in several ultraviolet interstellar absorption lines, with no clear outflow signatures. The absorption lines are redshifted by ∼250 km s−1with respect to the systemic redshift, and Civshows a prominent inverse P-Cygni profile. Simple stellar population models suggest that this galaxy has a low metallicity (∼5% solar), with a very young starburst of age ∼4 Myr dominating the ultraviolet luminosity. The gas inflow velocity and nebular velocity dispersion suggest an approximate halo mass of order ∼1011M⊙, a regime in which simulations predict that bursty star formation is common at this redshift. We conclude that this system is likely in the beginning of a cycle of bursty star formation, where inflow and star formation rates are high, but where supernovae and other feedback processes have not yet launched strong outflows. In this scenario, we expect the inflow-dominated phase to be observable (e.g., with net redshifted interstellar medium absorption) for only a short timescale after a starburst onset. This result represents a promising avenue for probing the full baryon cycle, including inflows, during the formative phases of low-mass galaxies at high redshifts.more » « less
-
Abstract Observed evolution of the total mass distribution with redshift is crucial to testing galaxy evolution theories. To measure the total mass distribution, strong gravitational lenses complement the resolved dynamical observations that are currently limited toz≲ 0.5. Here we present the lens models for a pilot sample of seven galaxy-scale lenses from theASTRO3DGalaxy Evolution with Lenses (AGEL) survey. TheAGELlenses, modeled using HST/WFC3-F140W images with Gravitational Lens Efficient Explorer (GLEE) software, have deflector redshifts in the range 0.3 <zdefl< 0.9. Assuming a power-law density profile with slopeγ, we measure the total density profile for the deflector galaxies via lens modeling. We also measure the stellar velocity dispersions (σobs) for four lenses and obtainσobsfromSDSS-BOSSfor the remaining lenses to test our lens models by comparing observed and model-predicted velocity dispersions. For the sevenAGELlenses, we measure an average density profile slope of −1.95 ± 0.09 and aγ–zrelation that does not evolve with redshift atz< 1. Although our result is consistent with some observations and simulations, it differs from other studies atz< 1 that suggest theγ–zrelation evolves with redshift. The apparent conflicts among observations and simulations may be due to a combination of (1) systematics in the lensing and dynamical modeling; (2) challenges in comparing observations with simulations; and (3) assuming a simple power law for the total mass distribution. By providing more lenses atzdefl> 0.5, theAGELsurvey will provide stronger constraints on whether the mass profiles evolve with redshift as predicted by current theoretical models.more » « less
-
Abstract We study the kinematics of the interstellar medium (ISM) viewed “down the barrel” in 20 gravitationally lensed galaxies during cosmic noon (z= 1.5–3.5). We use moderate-resolution spectra (R∼ 4000) from Keck’s Echellette Spectrograph and Imager and Magellan/MagE to spectrally resolve the ISM absorption in these galaxies into ∼10 independent elements and use double Gaussian fits to quantify the velocity structure of the gas. We find that the bulk motion of gas in this galaxy sample is outflowing, with average velocity centroid km s−1(±111 km s−1scatter) measured with respect to the systemic redshift. A total of 16 out of the 20 galaxies exhibit a clear positive skewness, with a blueshifted tail extending to ∼ −500 km s−1. We examine scaling relations in outflow velocities with galaxy stellar mass and star formation rate, finding correlations consistent with a momentum-driven wind scenario. Our measured outflow velocities are also comparable to those reported for FIRE-2 and TNG50 cosmological simulations at similar redshift and galaxy properties. We also consider implications for interpreting results from lower-resolution spectra. We demonstrate that while velocity centroids are accurately recovered, the skewness, velocity width, and probes of high-velocity gas (e.g.,v95) are subject to large scatter and biases at lower resolution. We find thatR≳ 1700 is required for accurate results for the gas kinematics of our sample. This work represents the largest available sample of well-resolved outflow velocity structure atz> 2 and highlights the need for good spectral resolution to recover accurate properties.more » « less
-
ABSTRACT Machine learning models can greatly improve the search for strong gravitational lenses in imaging surveys by reducing the amount of human inspection required. In this work, we test the performance of supervised, semi-supervised, and unsupervised learning algorithms trained with the ResNetV2 neural network architecture on their ability to efficiently find strong gravitational lenses in the Deep Lens Survey (DLS). We use galaxy images from the survey, combined with simulated lensed sources, as labeled data in our training data sets. We find that models using semi-supervised learning along with data augmentations (transformations applied to an image during training, e.g. rotation) and Generative Adversarial Network (GAN) generated images yield the best performance. They offer 5 – 10 times better precision across all recall values compared to supervised algorithms. Applying the best performing models to the full 20 deg2 DLS survey, we find 3 Grade-A lens candidates within the top 17 image predictions from the model. This increases to 9 Grade-A and 13 Grade-B candidates when 1 per cent (∼2500 images) of the model predictions are visually inspected. This is ≳ 10 × the sky density of lens candidates compared to current shallower wide-area surveys (such as the Dark Energy Survey), indicating a trove of lenses awaiting discovery in upcoming deeper all-sky surveys. These results suggest that pipelines tasked with finding strong lens systems can be highly efficient, minimizing human effort. We additionally report spectroscopic confirmation of the lensing nature of two Grade-A candidates identified by our model, further validating our methods.more » « less
-
ABSTRACT We present new observations of 16 bright (r = 19–21) gravitationally lensed galaxies at z ≃ 1–3 selected from the CASSOWARY survey. Included in our sample is the z = 1.42 galaxy CSWA-141, one of the brightest known reionization-era analogues at high redshift (g = 20.5), with a large specific star formation rate (31.2 Gyr−1) and an [O iii]+H β equivalent width (EW[O iii] + H β = 730 Å) that is nearly identical to the average value expected at z ≃ 7–8. In this paper, we investigate the rest-frame UV nebular line emission in our sample with the goal of understanding the factors that regulate strong C iii] emission. Although most of the sources in our sample show weak UV line emission, we find elevated C iii] in the spectrum of CSWA-141 (EWC iii] = 4.6 ± 1.9 Å) together with detections of other prominent emission lines (O iii], Si iii], Fe ii⋆, Mg ii). We compare the rest-optical line properties of high-redshift galaxies with strong and weak C iii] emission, and find that systems with the strongest UV line emission tend to have young stellar populations and nebular gas that is moderately metal-poor and highly ionized, consistent with trends seen at low and high redshift. The brightness of CSWA-141 enables detailed investigation of the extreme emission line galaxies which become common at z > 6. We find that gas traced by the C iii] doublet likely probes higher densities than that traced by [O ii] and [S ii]. Characterization of the spectrally resolved Mg ii emission line and several low-ionization absorption lines suggests neutral gas around the young stars is likely optically thin, potentially facilitating the escape of ionizing radiation.more » « less
-
Abstract Gravitational lenses can magnify distant galaxies, allowing us to discover and characterize the stellar populations of intrinsically faint, quiescent galaxies that are otherwise extremely difficult to directly observe at high redshift from ground-based telescopes. Here, we present the spectral analysis of two lensed, quiescent galaxies atz≳ 1 discovered by theASTRO 3D Galaxy Evolution with Lensessurvey:AGEL1323 (M*∼ 1011.1M⊙,z= 1.016,μ∼ 14.6) andAGEL0014 (M*∼ 1011.5M⊙,z= 1.374,μ∼ 4.3). We measured the age, [Fe/H], and [Mg/Fe] of the two lensed galaxies using deep, rest-frame-optical spectra (S/N ≳40 Å−1) obtained on the Keck I telescope. The ages ofAGEL1323 andAGEL0014 are Gyr and Gyr, respectively, indicating that most of the stars in the galaxies were formed less than 2 Gyr after the Big Bang. Compared to nearby quiescent galaxies of similar masses, the lensed galaxies have lower [Fe/H] and [Mg/H]. Surprisingly, the two galaxies have comparable [Mg/Fe] to similar-mass galaxies at lower redshifts, despite their old ages. Using a simple analytic chemical evolution model connecting the instantaneously recycled element Mg with the mass-loading factors of outflows averaged over the entire star formation history, we found that the lensed galaxies may have experienced enhanced outflows during their star formation compared to lower-redshift galaxies, which may explain why they quenched early.more » « less
-
The kinematics of star-forming galaxy populations at high redshifts are integral to our understanding of disk properties, merger rates, and other defining characteristics. Nebular gas emission is a common tracer of galaxies’ gravitational potential and angular momenta, but is sensitive to nongravitational forces as well as galactic outflows, and thus might not accurately trace the host galaxy dynamics. We present kinematic maps of young stars from rest-ultraviolet photospheric absorption in the star-forming galaxy CASSOWARY 13 (a.k.a. SDSS J1237+5533) atz= 1.87 using the Keck Cosmic Web Imager, alongside nebular emission measurements from the same observations. Gravitational lensing magnification of the galaxy enables good spatial sampling of multiple independent lensed images. We find close agreement between the stellar and nebular velocity fields. We measure a mean local velocity dispersion ofσ = 64 ± 12 km s−1for the young stars, consistent with that of the Hiiregions traced by nebular Ciii] emission (52 ± 9 km s−1). The ∼20 km s−1average difference in line-of-sight velocity is much smaller than the local velocity width and the velocity gradient (≳100 km s−1). We find no evidence of asymmetric drift nor evidence that outflows bias the nebular kinematics, and thus we conclude that nebular emission appears to be a reasonable dynamical tracer of young stars in the galaxy. These results support the picture of star formation in thick disks with high velocity dispersion atz ∼ 2, and they represent an important step toward establishing robust kinematics of early galaxies using collisionless tracers.more » « lessFree, publicly-accessible full text available September 17, 2026
-
Strong gravitational lenses with two background sources at widely separated redshifts are a promising independent probe of cosmological parameters. We can use these systems, known as double-source-plane lenses (DSPLs), to measure the ratio (β) of angular-diameter distances of the sources, which is sensitive to the matter density (Ωm) and the equation-of-state parameter for dark-energy (w). However, DSPLs are rare and require high-resolution imaging and spectroscopy for detection, lens modeling, and measuringβ. Here, we report only the second DSPL ever used to measure cosmological parameters. We model the DSPLAGEL150745+052256 from the ASTRO 3D Galaxy Evolution with Lenses (AGEL) survey using Hubble Space Telescope/Wide-Field Camera 3 imaging and Keck Cosmic Web Imager spectroscopy. The spectroscopic redshifts for the deflector and two sources inAGEL1507 arezdefl= 0.594,zS1 = 2.163, andzS2= 2.591. We measure a stellar velocity dispersion ofσobs = 109 ± 27 km s−1for the nearer source (S1). Usingσobsfor the main deflector (from literature) and S1, we test the robustness of our DSPL model. We measure forAGEL1507 and infer Ωm for ΛCDM cosmology. CombiningAGEL1507 with the published model of the Jackpot lens improves the precision on Ωm(ΛCDM) andw(wCDM) by ∼10%. The inclusion of DSPLs significantly improves the constraints when combined with Planck’s cosmic microwave background observations, enhancing the precision onwby 30%. This paper demonstrates the potential constraining power of DSPLs and their complementarity to other standard cosmological probes. Tighter future constraints from larger DSPL samples discovered from ongoing and forthcoming large-area sky surveys would provide insights into the nature of dark energy.more » « lessFree, publicly-accessible full text available September 16, 2026
-
We study the spatially resolved outflow properties of CSWA13, an intermediate-mass (M* = 109M⊙), gravitationally lensed star-forming galaxy atz= 1.87. We use Keck/KCWI to map outflows in multiple rest-frame UV interstellar medium (ISM) absorption lines, along with fluorescent Siii* emission, and nebular emission from Ciii] tracing the local systemic velocity. The spatial structure of the outflow velocity mirrors that of the nebular kinematics, which we interpret to be a signature of a young galactic wind that is pressurizing the ISM of the galaxy but is yet to burst out. From the radial extent of Siii* emission, we estimate that the outflow is largely encapsulated within 3.5 kpc. We explore the geometry (e.g., patchiness) of the outflow by measuring the covering fraction at different velocities, finding that the maximum covering fraction is at velocitiesv ≃ −150 km s−1. Using the outflow velocity (vout), radius (R), column density (N), and solid angle (Ω) based on the covering fraction, we measure the mass-loss rate and mass loading factor for the low-ionization outflowing gas in this galaxy. These values are relatively large and the bulk of the outflowing gas is moving with speeds less than the escape velocity of the galaxy halo, suggesting that the majority of the outflowing mass will remain in the circumgalactic medium and/or recycle back into the galaxy. The results support a picture of high outflow rates transporting mass and metals into the inner circumgalactic medium, providing the gas reservoir for future star formation.more » « lessFree, publicly-accessible full text available March 3, 2026
-
We report the discovery of a complete Einstein ring around the elliptical galaxy NGC 6505, atz = 0.042. This is the first strong gravitational lens discovered inEuclidand the first in an NGC object from any survey. The combination of the low redshift of the lens galaxy, the brightness of the source galaxy (IE = 18.1 lensed,IE = 21.3 unlensed), and the completeness of the ring make this an exceptionally rare strong lens, unidentified until its observation byEuclid. We present deep imaging data of the lens from theEuclidVisible Camera (VIS) and Near-Infrared Spectrometer and Photometer (NISP) instruments, as well as resolved spectroscopy from theKeckCosmic Web Imager (KCWI). TheEuclidimaging in particular presents one of the highest signal-to-noise ratio optical/near-infrared observations of a strong gravitational lens to date. From the KCWI data we measure a source redshift ofz = 0.406. Using data from the Dark Energy Spectroscopic Instrument (DESI) we measure a velocity dispersion for the lens galaxy ofσ⋆ = 303 ± 15 km s−1. We model the lens galaxy light in detail, revealing angular structure that varies inside the Einstein ring. After subtracting this light model from the VIS observation, we model the strongly lensed images, finding an Einstein radius of 2.″5, corresponding to 2.1 kpc at the redshift of the lens. This is small compared to the effective radius of the galaxy,Reff ∼ 12.″3. Combining the strong lensing measurements with analysis of the spectroscopic data we estimate a dark matter fraction inside the Einstein radius offDM = (11.1−3.5+5.4)% and a stellar initial mass-function (IMF) mismatch parameter ofαIMF = 1.26−0.08+0.05, indicating a heavier-than-Chabrier IMF in the centre of the galaxy.more » « lessFree, publicly-accessible full text available February 1, 2026
An official website of the United States government
