Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Fisheries are often characterized by high heterogeneity in the spatial distribution of habitat quality, as well as fishing effort. However, in several fisheries, the objective of achieving a sustainable yield is addressed by limiting Total Allowable Catch (TAC), set as a fraction of the overall population, regardless of the population's spatial distribution and of fishing effort. Here, we use an integral projection model to investigate how stock abundance and catch in the green abalone fishery in Isla Natividad, Mexico, are affected by the interaction of heterogeneity in habitat quality and fishing effort, and whether these interactions change with Allee effects—reproductive failure in a low-density population. We found that high-quality areas are under-exploited when fishing pressure is homogeneous but habitat is heterogeneous. However, this leads to different fishery outcomes depending on the stock's exploitation status, namely: sub-optimal exploitation when the TAC is set to maximum sustainable yield, and stability against collapses when the fishery is overexploited. Concentration of fishing effort in productive areas can compensate for this effect, which, similarly, has opposite consequences in both scenarios: fishery performance increases if the TAC is sustainable but decreases in overexploited fisheries. These results only hold when Allee effects are included.more » « less
-
Abstract Declining oxygen is one of the most drastic changes in the ocean, and this trend is expected to worsen under future climate change scenarios. Spatial variability in dissolved oxygen dynamics and hypoxia exposures can drive differences in vulnerabilities of coastal ecosystems and resources, but documentation of variability at regional scales is rare in open-coast systems. Using a regional collaborative network of dissolved oxygen and temperature sensors maintained by scientists and fishing cooperatives from California, USA, and Baja California, Mexico, we characterize spatial and temporal variability in dissolved oxygen and seawater temperature dynamics in kelp forest ecosystems across 13° of latitude in the productive California Current upwelling system. We find distinct latitudinal patterns of hypoxia exposure and evidence for upwelling and respiration as regional drivers of oxygen dynamics, as well as more localized effects. This regional and small-scale spatial variability in dissolved oxygen dynamics supports the use of adaptive management at local scales, and highlights the value of collaborative, large-scale coastal monitoring networks for informing effective adaptation strategies for coastal communities and fisheries in a changing climate.more » « less
-
Blue food systems are crucial for meeting global social and environmental goals. Both small-scale marine fisheries (SSFs) and aquaculture contribute to these goals, with SSFs supporting hundreds of millions of people and aquaculture currently expanding in the marine environment. Here we examine the interactions between SSFs and aquaculture, and the possible combined benefits and trade-offs of these interactions, along three pathways: (1) resource access and rights allocation; (2) markets and supply chains; and (3) exposure to and management of risks. Analysis of 46 diverse case studies showcase positive and negative interaction outcomes, often through competition for space or in the marketplace, which are context-dependent and determined by multiple factors, as further corroborated by qualitative modeling. Results of our mixed methods approach underscore the need to anticipate and manage interactions between SSFs and aquaculture deliberately to avoid negative socio-economic and environmental outcomes, promote synergies to enhance food production and other benefits, and ensure equitable benefit distribution.more » « lessFree, publicly-accessible full text available December 1, 2025
-
The global food production system is increasingly strained by abrupt and unpredictable weather events, which hinder communities' ability to adapt to climate variations. Despite advances in meteorological predictions, many communities lack the academic knowledge or infrastructure to interpret these complex models. This gap highlights the need for solutions that make climate forecasts more accessible and actionable, especially for communities reliant on natural resources. This study explores the potential of enhancing seasonal climate forecasts by integrating local ecological knowledge (LEK) with scientific data. Specifically, we combined ethnobiological information gathered between 2022 and 2024 with existing oceanographic and ecological data to create an ethnobiological calendar for four fishing cooperatives. An ethnographic approach was used to understand the population's ethnobiological knowledge and their perceptions of marine heatwaves and climate change impacts. Coastal monitoring data was collected using moorings that recorded temperature over a 14-year period (2010–2024). To characterize giant kelp dynamics, we used an existing dataset of multispectral Landsat images, which estimates the surface canopy biomass of giant kelp forests. Ecological monitoring was conducted annually every summer from 2006 to 2023 to record the in situ abundance of ecologically and economically important invertebrate and fish species. Combining oceanographic, ecological, and ethnographic data, allowed for alligning fishers' observations with recorded marine heatwave events and ecological shifts. Our findings revealed that these observations closely matched documented marine heatwave data and corresponding ecological changes. The integration of LEK with scientific oceanographic data can significantly improved our understanding of dynamic climate regimes, offering contextually relevant information that enhances the reliability and utility of seasonal climate forecasts. By incorporating yearly data into an ethnobiological calendar, we promote more inclusive, community-based approaches to environmental management, advocating for the integration of LEK in climate adaptation efforts, emphasizing its crucial role in strengthening resilience strategies against climatic shocks.more » « lessFree, publicly-accessible full text available October 21, 2025
-
Free, publicly-accessible full text available September 1, 2025
-
Free, publicly-accessible full text available August 1, 2025
-
Ocean warming is increasing organismal oxygen demand, yet at the same time the ocean’s oxygen supply is decreasing. For a patch of habitat to remain viable, there must be a minimum level of environmental oxygen available for an organism to fuel its metabolic demand—quantified as its critical oxygen partial pressure (pO2crit). The temperature-dependence ofpO2critsets an absolute lower boundary on aerobically viable ocean space for a species, yet whether certain life stages or geographically distant populations differ in their temperature-dependent hypoxia tolerance remains largely unknown. To address these questions, we used the purple sea urchinStrongylocentrotus purpuratusas a model species and measuredpO2critfor 3 populations of adult urchins (Clallam Bay, WA [n = 39], Monterey Bay, CA [91], San Diego, CA [34]) spanning 5-22°C and for key embryonic and larval developmental phases (blastula [n = 11], gastrula [21], prism [31], early-pluteus [21], late-pluteus [14], settled [12]) at temperatures of 10-19°C. We found that temperature-dependent hypoxia tolerance is consistent among adult populations exposed to different temperature and oxygen regimes, despite variable basal oxygen demands, suggesting differential capacity to provision oxygen. Moreover, we did not detect evidence for a hypoxia tolerance bottleneck for any developmental phase. Earlier larval phases are associated with higher hypoxia tolerance and greater temperature sensitivity, while this pattern shifts towards lower hypoxia tolerance and reduced temperature sensitivity as larvae develop. Our results indicate that, at least forS. purpuratus,models quantifying aerobically viable habitat based onpO2crit-temperature relationships from a single adult population will conservatively estimate viable habitat.more » « lessFree, publicly-accessible full text available July 4, 2025
-
Free, publicly-accessible full text available April 25, 2025
-
Coastal ecosystems and human communities are threatened worldwide by climate change, and shocks from social, market and political change. There is an urgent global need to promote resilient food production and livelihoods in the face of these shocks. Small-scale fisheries (SSF) in rural settings can be particularly vulnerable as they frequently lack the resources, rights and infrastructure to respond to shocks originating outside the focal systems. We examined ecological and social outcomes of environmental extremes in a SSF socio-ecological system (SES) by using long-term oceanographic (between 2010-2019) and ecological (2006-2018) data tracking change in a kelp forest ecosystem of Baja California, Mexico, and concurrent documentation of proactive and reactive actions of a fishing community organized in a cooperative. Results indicate a complex landscape of ‘winners’ and ‘losers’ among species and fisheries exposed to unprecedented environmental extremes, including marine heat waves and prolonged hypoxia, and a suite of adaptive actions by the local fishing cooperative, and others in the region, that have helped confront these rapid and drastic changes. Cooperatives have established voluntary marine reserves to promote recovery of affected populations and have invested in diversification of activities enabled by access rights, collective decision-making, and participatory science programs. Results indicate that local actions can support social and ecological resilience in the face of shocks, and that enabling locally-driven adaptation pathways is critical to resilience. This case study highlights the crucial importance of strengthening and supporting rights, governance, capacity, flexibility, learning, and agency for coastal communities to respond to change and sustain their livelihoods and ecosystems in the long run.more » « less