Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The commercialization of high‐energy Li‐metal batteries is impeded by Li dendrites formed during electrochemical cycling and the safety hazards it causes. Here, a novel porous copper current collector that can effectively mitigate the dendritic growth of Li is reported. This porous Cu foil is fabricated via a simple two‐step electrochemical process, where Cu‐Zn alloy is electrodeposited on commercial copper foil and then Zn is electrochemically dissolved to form a 3D porous structure of Cu. The 3D porous Cu layers on average have a thickness of ≈14 um and porosity of ≈72%. This current collector can effectively suppress Li dendrites in cells cycled with a high areal capacity of 10 mAh cm−2and under a high current density of 10 mA cm−2. This electrochemical fabrication method is facile and scalable for mass production. Results of advanced in situ synchrotron X‐ray diffraction reveal the phase evolution of the electrochemical deposition and dealloying processes.more » « less
-
Free, publicly-accessible full text available January 1, 2026
-
Free, publicly-accessible full text available November 1, 2025
An official website of the United States government
