skip to main content


Search for: All records

Award ID contains: 2108784

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 1, 2025
  2. Abstract We briefly compare the structure of two classes of popular models used to describe poro-mechanics and chemo-mechanics, wherein a fluid phase is transported within a solid phase. The multiplicative deformation decomposition has been successfully used to model permanent inelastic shape change in plasticity, solid–solid phase transformation, and thermal expansion, which has motivated its application to poro-mechanics and chemo-mechanics. However, the energetic decomposition provides a more transparent structure and advantages, such as to couple to phase-field fracture, for models of poro-mechanics and chemo-mechanics. 
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  3. Optical metasurfaces consist of densely arranged unit cells that manipulate light through various light confinement and scattering processes. Due to its unique advantages, such as high performance, small form factor and easy integration with semiconductor devices, metasurfaces have been gathering increasing attention in fields such as displays, imaging, sensing and optical computation. Despite advances in fabrication and characterization, a viable design prediction for suitable optical response remains challenging for complex optical metamaterial systems. The computation cost required to obtain the optimal design exponentially grows as the design complexity increases. Furthermore, the design prediction is challenging since the inverse problem is often ill-posed. In recent years, deep learning (DL) methods have shown great promise in the area of inverse design. Inspired by this and the capability of DL to produce fast inference, we introduce a physics-informed DL framework to expedite the computation for the inverse design of metasurfaces. Addition of the physics-based constraints improve generalizability of the DL model while reducing data burden. Our approach introduces a tandem DL architecture with physics-based learning to alleviate the nonuniqueness issue by selecting designs that are scientifically consistent, with low error in design prediction and accurate reconstruction of optical responses. To prove the concept, we focus on the inverse design of a representative plasmonic device that consists of metal gratings deposited on a dielectric film on top of a metal substrate. The optical response of the device is determined by the geometrical dimensions as well as the material properties. The training and testing data are obtained through Rigorous Coupled-Wave Analysis (RCWA), while the physics-based constraint is derived from solving the electromagnetic (EM) wave equations for a simplified homogenized model. We consider the prediction of design for the optical response of a single wavelength incident or a spectrum of wavelength in the visible light range. Our model converges with an accuracy up to 97% for inverse design prediction with the optical response for the visible light spectrum as input. The model is also able to predict design with accuracy up to 96% and optical response reconstruction accuracy of 99% for optical response of a single wavelength of light as input. 
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  4. Free, publicly-accessible full text available June 1, 2024
  5. We investigate solution methods for large-scale inverse problems governed by partial differential equations (PDEs) via Bayesian inference. The Bayesian framework provides a statistical setting to infer uncertain parameters from noisy measurements. To quantify posterior uncertainty, we adopt Markov Chain Monte Carlo (MCMC) approaches for generating samples. To increase the efficiency of these approaches in high-dimension, we make use of local information about gradient and Hessian of the target potential, also via Hamiltonian Monte Carlo (HMC). Our target application is inferring the field of soil permeability processing observations of pore pressure, using a nonlinear PDE poromechanics model for predicting pressure from permeability. We compare the performance of different sampling approaches in this and other settings. We also investigate the effect of dimensionality and non-gaussianity of distributions on the performance of different sampling methods.

     
    more » « less
  6. Liquid Crystalline Elastomers (LCEs) are active materials that are of interest due to their programmable response to various external stimuli such as light and heat. When exposed to these stimuli,...

     
    more » « less
  7. We consider electrostatic interactions in two classes of nanostructures embedded in a three dimensional space: (1) helical nanotubes, and (2) thin films with uniform bending (i.e., constant mean curvature). Starting from the atomic scale with a discrete distribution of dipoles, we obtain the continuum limit of the electrostatic energy; the continuum energy depends on the geometric parameters that define the nanostructure, such as the pitch and twist of the helical nanotubes and the curvature of the thin film. We find that the limiting energy is local in nature. This can be rationalized by noticing that the decay of the dipole kernel is sufficiently fast when the lattice sums run over one and two dimensions, and is also consistent with prior work on dimension reduction of continuum micromagnetic bodies to the thin film limit. However, an interesting contrast between the discrete-to-continuum approach and the continuum dimension reduction approaches is that the limit energy in the latter depends only on the normal component of the dipole field, whereas in the discrete-to-continuum approach, both tangential and normal components of the dipole field contribute to the limit energy. 
    more » « less