skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2108871

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The standard magnetorotational instability (SMRI) is a promising mechanism for turbulence and rapid accretion in astrophysical disks. It is a magnetohydrodynamic (MHD) instability that destabilizes otherwise hydrodynamically stable disk flow. Due to its microscopic nature at astronomical distances and stringent requirements in laboratory experiments, SMRI has remained unconfirmed since its proposal, despite its astrophysical importance. Here we report a nonaxisymmetric MHD instability in a modified Taylor-Couette experiment. To search for SMRI, a uniform magnetic field is imposed along the rotation axis of a swirling liquid-metal flow. The instability initially grows exponentially, becoming prominent only for sufficient flow shear and moderate magnetic field. These conditions for instability are qualitatively consistent with SMRI, but at magnetic Reynolds numbers below the predictions of linear analyses with periodic axial boundaries. Three-dimensional numerical simulations, however, reproduce the observed instability, indicating that it grows linearly from the primary axisymmetric flow modified by the applied magnetic field. 
    more » « less
  2. A concise review is given of astrophysically motivated experimental and theoretical research on Taylor–Couette flow. The flows of interest rotate differentially with the inner cylinder faster than the outer, but are linearly stable against Rayleigh’s inviscid centrifugal instability. At shear Reynolds numbers as large as 10 6 , hydrodynamic flows of this type (quasi-Keplerian) appear to be nonlinearly stable: no turbulence is seen that cannot be attributed to interaction with the axial boundaries, rather than the radial shear itself. Direct numerical simulations agree, although they cannot yet reach such high Reynolds numbers. This result indicates that accretion-disc turbulence is not purely hydrodynamic in origin, at least insofar as it is driven by radial shear. Theory, however, predicts linear magnetohydrodynamic (MHD) instabilities in astrophysical discs: in particular, the standard magnetorotational instability (SMRI). MHD Taylor–Couette experiments aimed at SMRI are challenged by the low magnetic Prandtl numbers of liquid metals. High fluid Reynolds numbers and careful control of the axial boundaries are required. The quest for laboratory SMRI has been rewarded with the discovery of some interesting inductionless cousins of SMRI, and with the recently reported success in demonstrating SMRI itself using conducting axial boundaries. Some outstanding questions and near-future prospects are discussed, especially in connection with astrophysics. This article is part of the theme issue ‘Taylor–Couette and related flows on the centennial of Taylor’s seminal Philosophical Transactions paper (part 2)’. 
    more » « less