Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Spear, John R (Ed.)ABSTRACT Cyanobacterial blooms pose environmental and health risks due to their production of toxic secondary metabolites. While current methods for assessing these risks have focused primarily on bloom frequency and intensity, the lack of comprehensive and comparable data on cyanotoxins makes it challenging to rigorously evaluate these health risks. In this study, we examined 750 metagenomic data sets collected from 103 lakes worldwide. Our analysis unveiled the diverse distributions of cyanobacterial communities and the genes responsible for cyanotoxin production across the globe. Our approach involved the integration of cyanobacterial biomass, the biosynthetic potential of cyanotoxin, and the potential effects of these toxins to establish potential cyanobacterial health risks. Our findings revealed that nearly half of the lakes assessed posed medium to high health risks associated with cyanobacteria. The regions of greatest concern were East Asia and South Asia, particularly in developing countries experiencing rapid industrialization and urbanization. Using machine learning techniques, we mapped potential cyanobacterial health risks in lakes worldwide. The model results revealed a positive correlation between potential cyanobacterial health risks and factors such as temperature, N2O emissions, and the human influence index. These findings underscore the influence of these variables on the proliferation of cyanobacterial blooms and associated risks. By introducing a novel quantitative method for monitoring potential cyanobacterial health risks on a global scale, our study contributes to the assessment and management of one of the most pressing threats to both aquatic ecosystems and human health. IMPORTANCEOur research introduces a novel and comprehensive approach to potential cyanobacterial health risk assessment, offering insights into risk from a toxicity perspective. The distinct geographical variations in cyanobacterial communities coupled with the intricate interplay of environmental factors underscore the complexity of managing cyanobacterial blooms at a global scale. Our systematic and targeted cyanobacterial surveillance enables a worldwide assessment of cyanobacteria-based potential health risks, providing an early warning system.more » « lessFree, publicly-accessible full text available November 20, 2025
-
Abstract This paper investigates toxic algal blooms (TABs) and their management as an example of a complex emerging contaminant (EC) problem through the lens of interconnected social, technical, ecological systems (SETS). We use mixed methods including analysis of a national survey of public drinking water systems and interviews with drinking water managers and state regulators. For the first time, we extend SETS to the drinking water context to advance a holistic understanding of the complexity of TABs as a problem for drinking water systems and identify specific intervention points to ease TABs management difficulty. We find that management challenges arise at the intersection of SET domains, and often coincide with circumstances where water managers and existing technologies are pushed outside of their traditional operating spheres or when new technologies are introduced creating cascading SET challenges. ECs that do not behave like traditional contaminants and pollutants require adapting social and technical systems to be responsive to these differences. Understanding how management difficulties arise within SET domains and their intersections will help drinking water managers and state regulators mitigate management difficulties in the future. These findings have implications for understanding and mitigating other EC management challenges as well.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Abstract Lake Erie, USA–Canada, plays an important ecological and socioeconomic role but has suffered from chronic eutrophication. In particular, western Lake Erie (WLE) is the site of harmful algal blooms (HABs) which are suspected of being driven by excessive nutrient (phosphorus (P) and nitrogen (N)) inputs. During 2022 and 2023, in situ nutrient dilution and addition bioassays were conducted at a WLE bloom‐impacted location to investigate whether a nutrient reduction regime would be effective in limiting phytoplankton growth during the June diatom‐dominated spring blooms and August cyanobacteria‐dominated summer blooms. The primary objectives of this experiment were to (1) Determine if a proposed 40% P‐alone reduction would effectively reduce phytoplankton growth and mitigate blooms and (2) assess whether reductions in both P and N are more effective in controlling phytoplankton biomass than exclusive reductions in either N or P. Samples were analyzed for nutrient concentrations and growth rate responses for specific algal groups, utilizing diagnostic (for major algal groups) photopigments. Results indicated that although both 20% and 40% dilutions led to lower phytoplankton biomass and growth rates, 40% reductions were more effective. Our results support the USA–Canada Great Lakes Water Quality Agreement recommendation of a 40% P reduction, but also indicate that a parallel reduction of N input by 40% would be most effective in controlling bloom magnitudes. Overall, our findings underscore the recommendation that a year‐round dual N and P 40% reduction is needed for long‐term control of eutrophication and algal blooms, including cyanobacteria and diatoms, in Lake Erie.more » « lessFree, publicly-accessible full text available November 1, 2025
-
Abstract Terrestrial hydrological and nutrient cycles are subjected to major disturbances by agricultural operations and urbanization that profoundly influence freshwater resources. Non‐point source pollution is one of the primary causes for water quality deterioration, and thus an emerging imperative in limnology is establishing empirical models that connect watershed attributes and hydrological drivers with lake nutrient dynamics. Here, we compiled three nation‐wide nutrient, meteorological, and watershed‐landscape data sets, to develop Generalized Linear Models that predict lake phosphorus and nitrogen concentrations as a function of the surrounding watershed characteristics within various hydrological distances across 104 Chinese lakes and reservoirs. Our national‐scale investigation revealed that lake nutrient concentrations can be satisfactorily predicted by proxies of natural drivers and anthropogenic activities, reflecting the properties of the surrounding watershed. Counter to previous studies, we found that China's lake nutrient concentrations strongly depend on watershed characteristics within a hydrological distance of less than 45 km rather than the entire watershed. Furthermore, extensive human activities in watersheds not only compromise our predictive capacity, but also increase the hydrological distance that is relevant to predict lake nutrients. This national‐scale characterization can inform one of the most contentious issues in the context of China's lake management, that is, the determination of the extent of the nearshore area, where nutrient control should be prioritized. As far as we know, our study represents the first attempt to apply the concept of hydrological distance and establish statistical models that can delineate the critical spatial domain primarily responsible for the nutrient conditions along the watershed‐lake continuum.more » « lessFree, publicly-accessible full text available October 1, 2025
-
Abstract Billions of years ago, the Earth's waters were dominated by cyanobacteria. These microbes amassed to such formidable numbers, they ushered in a new era—starting with the Great Oxidation Event—fuelled by oxygenic photosynthesis. Throughout the following eon, cyanobacteria ceded portions of their global aerobic power to new photoautotrophs with the rise of eukaryotes (i.e. algae and higher plants), which co‐existed with cyanobacteria in aquatic ecosystems. Yet while cyanobacteria's ecological success story is one of the most notorious within our planet's biogeochemical history, scientists to this day still seek to unlock the secrets of their triumph. Now, the Anthropocene has ushered in a new era fuelled by excessive nutrient inputs and greenhouse gas emissions, which are again reshaping the Earth's biomes. In response, we are experiencing an increase in global cyanobacterial bloom distribution, duration, and frequency, leading to unbalanced, and in many instances degraded, ecosystems. A critical component of the cyanobacterial resurgence is the freshwater‐marine continuum: which serves to transport blooms, and the toxins they produce, on the premise that “water flows downhill”. Here, we identify drivers contributing to the cyanobacterial comeback and discuss future implications in the context of environmental and human health along the aquatic continuum. This Minireview addresses the overlooked problem of the freshwater to marine continuum and the effects of nutrients and toxic cyanobacterial blooms moving along these waters. Marine and freshwater research have historically been conducted in isolation and independently of one another. Yet, this approach fails to account for the interchangeable transit of nutrients and biology through and between these freshwater and marine systems, a phenomenon that is becoming a major problem around the globe. This Minireview highlights what we know and the challenges that lie ahead.more » « less
-
Abstract Sustainable management of lakes requires us to overcome ecological, economic, and social challenges. These challenges can be addressed by focusing on achieving ecological improvement within a multifaceted, co‐beneficial context. In‐lake restoration measures may promote more rapid ecosystem responses than is feasible with catchment measures alone, even if multiple interventions are needed. In particular, we identify restoration methods that support the overarching societal target of a circular economy through the use of nutrients, sediments, or biomass that are removed from a lake, in agriculture, as food, or for biogas production. In this emerging field of sustainable restoration techniques, we show examples, discuss benefits and pitfalls, and flag areas for further research and development. Each lake should be assessed individually to ensure that restoration approaches will effectively address lake‐specific problems, do not harm the target lake or downstream ecosystems, are cost‐effective, promote delivery of valuable ecosystem services, minimize conflicts in public interests, and eliminate the necessity for repeated interventions. Achieving optimal, sustainable results from lake restoration relies on multidisciplinary research and close interactions between environmental, social, political, and economic sectors. This article is categorized under:Science of Water > Water QualityWater and Life > Stresses and Pressures on EcosystemsWater and Life > Conservation, Management, and Awarenessmore » « less
-
Free, publicly-accessible full text available December 1, 2025
-
Harmful algal blooms can produce toxins that pose threats to aquatic ecosystems and human health. In this Review, we outline the global trends in harmful algal bloom occurrence and explore the drivers, future trajectories and potential mitigation strategies. Globally, harmful algal bloom occurrence has risen since the 1980s, including a 44% increase from the 2000s to 2010s, especially in Asia and Africa. Enhanced nutrient pollution owing to urbanization, wastewater discharge and agricultural expansion are key drivers of these increases. In contrast, changes have been less substantial in high-income regions such as North America, Europe and Oceania, where policies to mitigate nutrient pollution have stabilized bloom occurrences since the 1970s. However, since the 1990s, climate warming and legacy nutrient pollution have driven a resurgence in toxic algal blooms in some US and European lakes, highlighting the inherent challenges in mitigating harmful blooms in a warming climate. Indeed, advancing research on harmful algal bloom dynamics and projections largely depends on effectively using data from multiple sources to understand environmental interactions and enhance modelling techniques. Integrated monitoring networks across various spatiotemporal scales and data-sharing frameworks are essential for improving harmful algal bloom forecasting and mitigation.more » « lessFree, publicly-accessible full text available September 1, 2025
-
Free, publicly-accessible full text available July 1, 2025