Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Laser wakefield accelerators (LWFAs) have electric fields that are orders of magnitude larger than those of conventional accelerators, promising an attractive, small-scale alternative for next-generation light sources and lepton colliders. The maximum energy gain in a single-stage LWFA is limited by dephasing, which occurs when the trapped particles outrun the accelerating phase of the wakefield. Here, we demonstrate that a single space–time structured laser pulse can be used for ionization injection and electron acceleration over many dephasing lengths in the bubble regime. Simulations of a dephasingless laser wakefield accelerator driven by a 6.2-J laser pulse show 25 pC of injected charge accelerated over 20 dephasing lengths (1.3 cm) to a maximum energy of 2.1 GeV. The space–time structured laser pulse features an ultrashort, programmable-trajectory focus. Accelerating the focus, reducing the focused spot-size variation, and mitigating unwanted self-focusing stabilize the electron acceleration, which improves beam quality and leads to projected energy gains of 125 GeV in a single, sub-meter stage driven by a 500-J pulse.more » « less
-
Plasma-based acceleration (PBA) is being considered for a next generation linear collider (LC). In some PBA-LC designs for the electron arm, the extreme beam parameters are expected to trigger background ion motion within the witness beam, which can lead to longitudinally varying nonlinear focusing forces and result in an unacceptable emittance growth of the beam. To mitigate this, we propose to use quasi-adiabatic plasma density ramps as matching sections at the entrance and exit of each stage. We match the witness electron beam to the low density plasma entrance, where the beam initially has a large matched spot size so the ion motion effects are relatively small. As the beam propagates in the plasma density upramp, it is quasi-adiabatically focused, and its distribution maintains a non-Gaussian equilibrium distribution in each longitudinal slice throughout the process, even when severe ion collapse has occurred. This only causes small amounts of slice emittance growth. The phase mixing between slices with different betatron frequencies leads to additional projected emittance growth within the acceleration stage. A density downramp at the exit of an acceleration section can eliminate much of the slice and projected emittance growth as the beam and ion motion adiabatically defocuses and decreases, respectively. Simulation results from QuickPIC with Azimuthal Decomposition show that within a single acceleration stage with a 25 GeV energy gain, this concept can limit the projected emittance growth to only ∼2% for a 25 GeV, 100 nm emittance witness beam and ∼20% for a 100 GeV, 100 nm normalized emittance witness beam. The trade-off between the adiabaticity of the plasma density ramp and the initial ion motion at the entrance for a given length of the plasma density ramp is also discussed.more » « less
-
Accelerator-based x-ray free-electron lasers (XFELs) are the latest addition to the revolutionary tools of discovery for the 21st century. The two major components of an XFEL are an accelerator-produced electron beam and a magnetic undulator, which tend to be kilometer-scale long and expensive. A proof-of-principle demonstration of free-electron lasing at 27 nm using beams from compact laser wakefield accelerators was shown recently by using a magnetic undulator. However, scaling these concepts to x-ray wavelengths is far from straightforward as the requirements on the beam quality and jitters become much more stringent. Here, we present an ultracompact scheme to produce tens of attosecond x-ray pulses with several GW peak power utilizing a novel aspect of the FEL instability using a highly chirped, prebunched, and ultrabright tens of MeVelectron beam from a plasma-based accelerator interacting with an optical undulator. The FEL resonant relation between the prebunched period and the energy selects resonant electrons automatically from the highly chirped beam which leads to a stable generation of attosecond x-ray pulses. Furthermore, two-color attosecond pulses with subfemtosecond separation can be produced by adjusting the energy distribution of the electron beam so that multiple FEL resonances occur at different locations within the beam. Such a tunable coherent attosecond x-ray sources may open up a new area of attosecond science enabled by x-ray attosecond pump/probe techniquesmore » « less
-
Coherent light sources, such as free-electron lasers, provide bright beams for studies in biology, chemistry and physics. However, increasing the brightness of these sources requires progressively larger instruments, with the largest examples, such as the Linac Coherent Light Source at Stanford, being several kilometres long. It would be transformative if this scaling trend could be overcome so that compact, bright sources could be employed at universities, hospitals and industrial laboratories. Here we address this issue by rethinking the basic principles of radiation physics. At the core of our work is the introduction of quasiparticle-based light sources that rely on the collective and macroscopic motion of an ensemble of light-emitting charges to evolve and radiate in ways that would be unphysical for single charges. The underlying concept allows for temporal coherence and superradiance in new configurations, such as in plasma accelerators, providing radiation with intriguing properties and clear experimental signatures spanning nearly ten octaves in wavelength, from the terahertz to the extreme ultraviolet. The simplicity of the quasiparticle approach makes it suitable for experimental demonstrations at existing laser and accelerator facilities and also extends well beyond this case to other scenarios such as nonlinear optical configurations.more » « less
-
Plasma based acceleration (PBA) is being considered for a next generation linear collider (LC). In typical AsmPBA-LC designs, the extreme beam parameters are expected to trigger background ion motion, which can lead to longitudinally varying nonlinear focusing forces and result in emittance growth of the beam. While various schemes have been proposed to mitigate this at low beam energies, a solution to minimize the emittance growth in the later high energy stages of a multistage electron acceleration arm is yet to be found. In this paper, we propose to use an adiabatic plasma density ramp as a matching section that is able to match the witness electron beam to the low-density plasma entrance, where the beam initially has a large matched spot size so the ion motion effects are relatively small. As the beam propagates in the plasma density upramp (downramp), it is adiabatically focused (defocused) and its distribution maintains an equilibrium distribution throughout the entire process even when severe ion collapse has occurred. Simulation results from QPAD show that within a single acceleration stage, this concept can limit the projected emittance growth to only ∼2% for a 25 GeV, 100 nm normalized emittance witness beam and ∼20% for a 100 GeV, 100 nm normalized emittance witness beam.more » « less
-
The quality of electron beams produced from plasma-based accelerators, i.e., normalized brightness and energy spread, has made transformative progress in the past several decades in both simulation and experiment. Recently, full-scale particle-in-cell (PIC) simulations have shown that electron beams with unprecedented brightness (1020–1021 A=m2=rad2) and 0.1–1 MeVenergy spread can be produced through controlled injection in a slowly expanding bubble that arises when a particle beam or laser pulse propagates in density gradient, or when a particle beam self-focuses in uniform plasma or has a superluminal flying focus. However, in previous simulations of work on self-injection triggered by an evolving laser driver in a uniform plasma, the resulting beams did not exhibit comparable brightnesses and energy spreads. Here, we demonstrate through the use of large-scale high-fidelity PIC simulations that a slowly expanding bubble driven by a laser pulse in a uniform plasma can indeed produce self-injected electron beams with similar brightness and energy spreads as for an evolving bubble driven by an electron beam driver. We consider laser spot sizes roughly equal to the matched spot sizes in a uniform plasma and find that the evolution of the bubble occurs naturally through the evolution of the laser. The effects of the electron beam quality on the choice of physical as well as numerical parameters, e.g., grid sizes and field solvers used in the PIC simulations are presented. It is found that this original and simplest injection scheme can produce electron beams with beam quality exceeding that of the more recent concepts.more » « less
-
In a laser wakefield accelerator (LWFA), an intense laser pulse excites a plasma wave that traps and accelerates electrons to relativistic energies. When the pulse overlaps the accelerated electrons, it can enhance the energy gain through direct laser acceleration (DLA) by resonantly driving the betatron oscillations of the electrons in the plasma wave. The traditional particle-in-cell (PIC) algorithm, although often the tool of choice to study DLA, contains inherent errors due to numerical dispersion and the time staggering of the electric and magnetic fields. Furthermore, conventional PIC implementations cannot reliably disentangle the fields of the plasma wave and laser pulse, which obscures interpretation of the dominant acceleration mechanism. Here, a customized field solver that reduces errors from both numerical dispersion and time staggering is used in conjunction with a field decomposition into azimuthal modes to perform PIC simulations of DLA in an LWFA. Comparisons with traditional PIC methods, model equations, and experimental data show improved accuracy with the customized solver and convergence with an order-of-magnitude fewer cells. The azimuthal-mode decomposition reveals that the most energetic electrons receive comparable energy from DLA and LWFA.more » « less
-
Plasma-based acceleration has emerged as a promising candidate as an accelerator technology for a future linear collider or a next-generation light source. We consider the plasma wakefield accelerator (PWFA) concept where a plasma wave wake is excited by a particle beam and a trailing beam surfs on the wake. For a linear collider, the energy transfer efficiency from the drive beam to the wake and from the wake to the trailing beam must be large, while the emittance and energy spread of the trailing bunch must be preserved. One way to simultaneously achieve this when accelerating electrons is to use longitudinally shaped bunches and nonlinear wakes. In the linear regime, there is an analytical formalism to obtain the optimal shapes. In the nonlinear regime, however, the optimal shape of the driver to maximize the energy transfer efficiency cannot be precisely obtained because currently no theory describes the wake structure and excitation process for all degrees of nonlinearity. In addition, the ion channel radius is not well defined at the front of the wake where the plasma electrons are not fully blown out by the drive beam. We present results using a novel optimization method to effectively determine a current profile for the drive and trailing beam in PWFA that provides low energy spread, low emittance, and high acceleration efficiency. We parameterize the longitudinal beam current profile as a piecewise-linear function and define optimization objectives. For the trailing beam, the algorithm converges quickly to a nearly inverse trapezoidal trailing beam current profile similar to that predicted by the ultrarelativistic limit of the nonlinear wakefield theory. For the drive beam, the beam profile found by the optimization in the nonlinear regime that maximizes the transformer ratio also resembles that predicted by linear theory. The current profiles found from the optimization method provide higher transformer ratios compared with the linear ramp predicted by the relativistic limit of the nonlinear theory.more » « less
-
Bremsstrahlung x rays generated in laser-solid interactions can be used as light sources for high-energy-density science. We present electron and x-ray spectra from multidimensional kinetic simulations with varying laser pulse intensity and duration at fixed energy of 200J. A phenomenological model for the transition from superponderomotive to ponderomotive temperatures is described, yielding a temperature scaling that depends on pulse duration and density scale length. The shortest pulses create low-divergence electron beams before self-generated magnetic fields evolve, yielding 1–5−MeV forward-going x rays containing ∼0.5% of the laser energy.more » « less