Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract We investigated how various sources contributed to observations of over 40 trace gas and particulate species in a typical Fairbanks residential neighborhood during the Alaskan Layered Pollution and Chemical Analysis campaign in January–February 2022. Aromatic volatile organic compounds (VOCs) accounted for ∼50% of measured VOCs (molar ratio), while methanol and ethanol accounted for ∼34%. The total wintertime VOC burden and contribution from aromatics were much higher than other US urban areas. Based on diel cycles and positive matrix factorization (PMF) analyses, we find traffic was the largest source of NO, CO, black carbon, and aromatic VOCs. Formic and acetic acid, hydroxyacetone, furanoids, and other VOCs were primarily attributed to residential wood combustion (RWC). Formaldehyde was one of several VOCs featuring significant contributions from multiple sources: RWC (∼35%), aging (∼30%), traffic (∼21%), and heating oil combustion (HO, ∼14%). PMF solutions assigned primary fine particulate matter to RWC (10%–30%), traffic (25%–40%), and HO (30%–60%), the latter likely reflecting high sulfur emissions from older furnaces and fast secondary chemistry. Despite cold and dark conditions, secondary processes impacted many trace gas and particle species' budget by ±10%–20% and more in some cases. Transport of O3‐rich regional air into Fairbanks contributed to aging, specifically NO3radical formation. This work highlights a long‐term trend observed in Fairbanks: increasing traffic and decreasing RWC relative contributions as total pollution decreases. Fairbanks exports a relatively fresh pollutant mixture to the regional arctic, the fate of which warrants future study.more » « less
- 
            Modeling of atmosphere–snow exchange provides insight into fundamental processes driving pollutant deposition. Gas properties, such as solubility and stickiness to ice, influence the role of the snowpack as a trace gas reservoir and chemical reactor.more » « lessFree, publicly-accessible full text available June 16, 2026
- 
            Surprisingly robust photochemistry in subarctic particles during winter: evidence from photooxidantsAbstract. Subarctic cities notoriously experience severe winter pollution episodes with fine particle (PM2.5) concentrations above 35 µg m−3, the US Environmental Protection Agency (EPA) 24 h standard. While winter sources of primary particles in Fairbanks, Alaska, have been studied, the chemistry driving secondary particle formation is elusive. Biomass burning is a major source of wintertime primary particles, making the PM2.5 rich in light-absorbing brown carbon (BrC). When BrC absorbs sunlight, it produces photooxidants – reactive species potentially important for secondary sulfate and secondary organic aerosol formation – yet photooxidant measurements in high-latitude PM2.5 remain scarce. During the winter of 2022 Alaskan Layered Pollution And Chemical Analysis (ALPACA) field campaign in Fairbanks, we collected PM filters, extracted the filters into water, and exposed the extracts to simulated sunlight to characterize the production of three photooxidants: oxidizing triplet excited states of BrC, singlet molecular oxygen, and hydroxyl radical. Next, we used our measurements to model photooxidant production in highly concentrated aerosol liquid water. While conventional wisdom indicates photochemistry is limited during high-latitude winters, we find that BrC photochemistry is significant: we predict high triplet and singlet oxygen daytime particle concentrations up to 2×10-12 and 3×10-11 M, respectively, with moderate hydroxyl radical concentrations up to 5×10-15 M. Although our modeling predicts that triplets account for 0.4 %–10 % of daytime secondary sulfate formation, particle photochemistry cumulatively dominates, generating 76 % of daytime secondary sulfate formation, largely due to in-particle hydrogen peroxide, which contributes 25 %–54 %. Finally, we estimate triplet production rates year-round, revealing the highest rates in late winter when Fairbanks experiences severe pollution and in summer when wildfires generate BrC.more » « lessFree, publicly-accessible full text available January 1, 2026
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
