Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Getting Nosy: Olfactory Rosette Morphology and Lamellar Microstructure of Two Chondrichthyan SpeciesSynopsis To smell, fish rely on passive water flow into their olfactory chambers and through their olfactory rosettes to detect chemical signals in their aquatic environment. The olfactory rosette is made up of secondarily folded tissues called olfactory lamellae. The olfactory morphology of cartilaginous fishes varies widely in both rosette gross morphology and lamellar microstructure. Previous research has shown differences in lamellar sensory morphology depending on the position along the rosette in hammerheads (family Sphyrnidae). Here, we investigate if this pattern continues in members of two other chondrichthyan families: Squalidae and Chimaeridae. Using contrast-enhanced microCT and scanning electron microscopy, we investigated patterns in lamellar morphology based on lamellar position along the olfactory rosette in Pacific spiny dogfish (Squalus suckleyi) and spotted ratfish (Hydrolagus colliei). We describe the gross olfactory rosette anatomy and lamellar microstructure of both species. We also put forth a new method, combining 3D morphological microCT data with 2D SEM microstructure data to better approximate lamellar sensory surface area. We found that in both species, lamellae in the center of the rosette were larger with more secondary folds. However, we found no significant differences in lamellar sensory surface area among lamellar positions. Previously, differences in lamellar sensory morphology have been tied to the internal fluid dynamics of the olfactory chamber. It is possible that the internal flow dynamics of these species are like other chondrichthyan models, where water flow patterns differ in the lateral vs the medial part of the organ, and the consistent distribution of sensory tissue does not correspond to this flow. Alternatively, the olfactory morphology of these species may result in uniform flow patterns throughout the olfactory chamber, correlating with the consistent distribution of sensory tissue throughout the organ. This study emphasizes that further investigations into chondrichthyan fluid dynamics is paramount to any future studies on the correlations between distribution of sensory tissues and water flow.more » « less
-
Abstract Gut morphology frequently reflects the food organisms digest. Gizzards are organs of the gut found in archosaurs and fishes that mechanically reduce food to aid digestion. Gizzards are thought to compensate for edentulism and/or provide an advantage when consuming small, tough food items (e.g., phytoplankton and algae). It is unknown how widespread gizzards are in fishes and how similar these structures are among different lineages. Here, we investigate the distribution of gizzards across bony fishes to (1) survey different fishes for gizzard presence, (2) compare the histological structure of gizzards in three species, (3) estimate how often gizzards have evolved in fishes, and (4) explore whether anatomical and ecological traits like edentulism and microphagy predict gizzard presence. According to our analyses, gizzards are rare across bony fishes, evolving only six times in a broad taxonomic sampling of 51 species, and gizzard presence is not clearly correlated with factors like gut length or dentition. We find that gizzard morphology varies among the lineages where one is present, both macroscopically (presence of a crop) and microscopically (varying tissue types). We conclude that gizzards likely aid in the mechanical reduction of food in fishes that have lost an oral dentition in their evolutionary past; however, the relative scarcity of gizzards suggests they are just one of many possible solutions for processing tough, nutrientâpoor food items. Gizzards have long been present in the evolutionary history of fishes, can be found in a wide variety of marine and freshwater clades, and likely have been overlooked in many taxa.more » « less
An official website of the United States government
