skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2110379

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT In 1991 Ramshaw and Mesina proposed a novel synthesis of penalty methods and artificial compression methods. When the two were balanced they found the combination was 3–4 orders more accurate than either alone. This report begins developing a mathematical foundation addressing the reliability of their interesting method. We perform stability analysis, semi‐discrete error analysis, and tests of the algorithm. 
    more » « less
  2. Abstract The classical Smagorinsky model's solution is an approximation to a (resolved) mean velocity. Since it is an eddy viscosity model, it cannot represent a flow of energy from unresolved fluctuations to the (resolved) mean velocity. This model has recently been corrected to incorporate this flow and still be well‐posed. Herein we first develop some basic properties of the corrected model. Next, we perform a complete numerical analysis of two algorithms for its approximation. They are tested and proven to be effective. 
    more » « less
  3. Abstract Artificial compression methods are used in computational fluid dynamics as a cost‐effective way of solving for the velocity and pressure in a flow. However, relaxation of compressibility in these algorithms yields nonphysical oscillations in the pressure. This report presents analysis and computational tests of time filters to reduce nonphysical acoustic waves in artificial compression methods. 
    more » « less
  4. Free, publicly-accessible full text available May 26, 2026
  5. Free, publicly-accessible full text available January 1, 2026