Galactic dark matter may consist of axionlike particles (ALPs) that can be described as an “ultralight bosonic field” oscillating at the ALP Compton frequency. The ALP field can be searched for using nuclear magnetic resonance (NMR), where resonant precession of spins of a polarized sample can be sensitively detected. The ALP mass to which the experiment is sensitive is scanned by sweeping the bias magnetic field. The scanning either results in detection of ALP dark matter or rules out ALP dark matter with sufficiently strong couplings to nuclear spins over the range of ALP masses corresponding to the covered span of Larmor frequencies. In this work, scanning strategies are analyzed with the goal of optimizing the parameter‐space coverage via a proper choice of experimental parameters (e.g., the effective transverse relaxation time).
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Abstract Calibration of nuclear‐magnetic‐resonance‐based searches for axion‐like dark matter can be performed by free induction decay (FID) measurements. This manu‐ script describes FID experiments on several solid materials, motivated by the Cosmic Axion Spin Precession Experiment (CASPEr) program. Experiments with207Pb nuclear spins in ferroelectrics, lead magnesium niobate‐lead titanate (PbMg1/3Nb2/3O3) (PbTiO3)1/3(PMN‐PT) and lead zirconium titante PbZr0.52Ti0.48O3(PZT) are directly relevant to the CASPEr‐electric search for the electric dipole moment interaction of axion‐like dark matter. Experiments with31P nuclear spins in gadolinium‐doped hydroxypyromorphite Pb4.95Gd0.05(PO4)3OH (HPM:Gd) are used for apparatus calibration. The measurements characterized the nuclear spin ensemble coherence time and the magnetic resonance detection sensitivity for these samples. Calibration is performed using small tip‐angle pulses.
-
Abstract Numerous observations suggest that there exist undiscovered beyond‐the‐standard‐model particles and fields. Because of their unknown nature, these exotic particles and fields could interact with standard model particles in many different ways and assume a variety of possible configurations. Here, an overview of the global network of optical magnetometers for exotic physics searches (GNOME), the ongoing experimental program designed to test a wide range of exotic physics scenarios, is presented. The GNOME experiment utilizes a worldwide network of shielded atomic magnetometers (and, more recently, comagnetometers) to search for spatially and temporally correlated signals due to torques on atomic spins from exotic fields of astrophysical origin. The temporal characteristics of a variety of possible signals currently under investigation such as those from topological defect dark matter (axion‐like particle domain walls), axion‐like particle stars, solitons of complex‐valued scalar fields (Q‐balls), stochastic fluctuations of bosonic dark matter fields, a solar axion‐like particle halo, and bursts of ultralight bosonic fields produced by cataclysmic astrophysical events such as binary black hole mergers are surveyed.
-
Free, publicly-accessible full text available April 1, 2025
-
We propose and demonstrate a general method to calibrate the frequency-dependent response of selfcompensating noble-gas–alkali-metal comagnetometers to arbitrary spin perturbations. This includes magnetic and nonmagnetic perturbations such as rotations and exotic spin interactions. The method is based on a fit of the magnetic field response to an analytical model. The frequency-dependent response of the comagnetometer to arbitrary spin perturbations can be inferred using the fit parameters. We demonstrate the effectiveness of this method by comparing the inferred rotation response to an experimental measurement of the rotation response. Our results show that experiments relying on zero-frequency calibration of the comagnetometer response can over- or underestimate the comagnetometer sensitivity by orders of magnitude over a wide frequency range. Moreover, this discrepancy accumulates over time as operational parameters tend to drift during comagnetometer operation. The demonstrated calibration protocol enables accurate prediction and control of comagnetometer sensitivity to, for example, ultralight bosonic dark-matter fields coupling to electron or nuclear spins, as well as accurate monitoring and control of the relevant system parameters.more » « lessFree, publicly-accessible full text available March 1, 2025
-
Earth can act as a transducer to convert ultralight bosonic dark matter (axions and hidden photons) into an oscillating magnetic field with a characteristic pattern across its surface. Here we describe the first results of a dedicated experiment, the Search for Noninteracting Particles Experimental Hunt, that aims to detect such dark-matter-induced magnetic-field patterns by performing correlated measurements with a network of magnetometers in relatively quiet magnetic environments (in the wilderness far from human-generated magnetic noise). Our experiment constrains parameter space describing hidden-photon and axion dark matter with Compton frequencies in the 0.5–5.0 Hz range. Limits on the kinetic-mixing parameter for hidden-photon dark matter represent the best experimental bounds to date in this frequency range.more » « less