skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2110388

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Galactic dark matter may consist of axionlike particles (ALPs) that can be described as an “ultralight bosonic field” oscillating at the ALP Compton frequency. The ALP field can be searched for using nuclear magnetic resonance (NMR), where resonant precession of spins of a polarized sample can be sensitively detected. The ALP mass to which the experiment is sensitive is scanned by sweeping the bias magnetic field. The scanning either results in detection of ALP dark matter or rules out ALP dark matter with sufficiently strong couplings to nuclear spins over the range of ALP masses corresponding to the covered span of Larmor frequencies. In this work, scanning strategies are analyzed with the goal of optimizing the parameter‐space coverage via a proper choice of experimental parameters (e.g., the effective transverse relaxation time). 
    more » « less
  2. Abstract Calibration of nuclear‐magnetic‐resonance‐based searches for axion‐like dark matter can be performed by free induction decay (FID) measurements. This manu‐ script describes FID experiments on several solid materials, motivated by the Cosmic Axion Spin Precession Experiment (CASPEr) program. Experiments with207Pb nuclear spins in ferroelectrics, lead magnesium niobate‐lead titanate (PbMg1/3Nb2/3O3) (PbTiO3)1/3(PMN‐PT) and lead zirconium titante PbZr0.52Ti0.48O3(PZT) are directly relevant to the CASPEr‐electric search for the electric dipole moment interaction of axion‐like dark matter. Experiments with31P nuclear spins in gadolinium‐doped hydroxypyromorphite Pb4.95Gd0.05(PO4)3OH (HPM:Gd) are used for apparatus calibration. The measurements characterized the nuclear spin ensemble coherence time and the magnetic resonance detection sensitivity for these samples. Calibration is performed using small tip‐angle pulses. 
    more » « less
  3. Abstract Numerous observations suggest that there exist undiscovered beyond‐the‐standard‐model particles and fields. Because of their unknown nature, these exotic particles and fields could interact with standard model particles in many different ways and assume a variety of possible configurations. Here, an overview of the global network of optical magnetometers for exotic physics searches (GNOME), the ongoing experimental program designed to test a wide range of exotic physics scenarios, is presented. The GNOME experiment utilizes a worldwide network of shielded atomic magnetometers (and, more recently, comagnetometers) to search for spatially and temporally correlated signals due to torques on atomic spins from exotic fields of astrophysical origin. The temporal characteristics of a variety of possible signals currently under investigation such as those from topological defect dark matter (axion‐like particle domain walls), axion‐like particle stars, solitons of complex‐valued scalar fields (Q‐balls), stochastic fluctuations of bosonic dark matter fields, a solar axion‐like particle halo, and bursts of ultralight bosonic fields produced by cataclysmic astrophysical events such as binary black hole mergers are surveyed. 
    more » « less
  4. Axion-like particles (ALPs) arise from well-motivated extensions to the Standard Model and could account for dark matter. ALP dark matter would manifest as a field oscillating at an (as of yet) unknown frequency. The frequency depends linearly on the ALP mass and plausibly ranges from 10−22to 10 eV/c2. This motivates broadband search approaches. We report on a direct search for ALP dark matter with an interferometer composed of two atomic K-Rb-3He comagnetometers, one situated in Mainz, Germany, and the other in Kraków, Poland. We leverage the anticipated spatio-temporal coherence properties of the ALP field and probe all ALP-gradient-spin interactions covering a mass range of nine orders of magnitude. No significant evidence of an ALP signal is found. We thus place new upper limits on the ALP-neutron, ALP-proton and ALP-electron couplings reaching belowgaNN < 10−9 GeV−1,gaPP < 10−7 GeV−1andgaee < 10−6 GeV−1, respectively. These limits improve upon previous laboratory constraints for neutron and proton couplings by up to three orders of magnitude. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  5. We search for dark matter in the form of axionlike particles (ALPs) in the mass range 5.576741 neV / c 2 5.577733 neV / c 2 by probing their possible coupling to fermion spins through the ALP field gradient. This is achieved by performing proton nuclear magnetic resonance spectroscopy on a sample of methanol as a technical demonstration of the Cosmic Axion Spin Precession Experiment Gradient (CASPEr-Gradient) Low-Field apparatus. Searching for spin-coupled ALP dark matter in this mass range with associated Compton frequencies in a 240 Hz window centered at 1.348570 MHZ resulted in a sensitivity to the ALP-proton coupling constant of g ap 3 × 10 2 GeV 1 . This narrow-bandwidth search serves as a proof-of-principle and a commissioning measurement, validating our methodology and demonstrating the experiment’s capabilities. CASPEr-Gradient Low-Field will probe the mass range from 4.1 peV / c 2 to 17    neV / c 2 with hyperpolarized samples to boost the sensitivity beyond the astronomical limits. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  6. The history of astronomy has shown that advances in sensing methods open up new windows to the Universe and often lead to unexpected discoveries. Quantum sensor networks in combination with traditional astronomical observations are emerging as a novel modality for multimessenger astronomy. Here we develop a generic analysis framework that uses a data-driven approach to model the sensitivity of a quantum sensor network to astrophysical signals as a consequence of beyond-the-standard model (BSM) physics. The analysis method evaluates correlations between sensors to search for BSM signals coincident with astrophysical triggers, such as black hole mergers, supernovae, or fast radio bursts. Complementary to astroparticle approaches that search for particlelike signals (e.g., weakly interacting massive particles), quantum sensors are sensitive to wavelike signals from exotic quantum fields. This analysis method can be applied to networks of different types of quantum sensors, such as atomic clocks, matter-wave interferometers, and nuclear clocks, which can probe many types of interactions between BSM fields and standard model particles. We use this analysis method to carry out the first direct search utilizing a terrestrial network of precision quantum sensors for BSM fields emitted during a black hole merger. Specifically, we use the global network of optical magnetometers for exotic physics (GNOME) to perform a search for exotic low-mass field (ELF) bursts generated in coincidence with a gravitational-wave signal from a binary black hole merger (GW200311_115853) detected by LIGO/Virgo on the March 11, 2020. The associated gravitational wave heralds the arrival of the ELF burst that interacts with the spins of fermions in the magnetometers. This enables GNOME to serve as a tool for multimessenger astronomy. Our search found no significant events and, consequently, we place the first lab-based limits on combinations of ELF production and coupling parameters. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  7. Levitated ferromagnets act as ultraprecise magnetometers, which can exhibit high quality factors due to their excellent isolation from the environment. These instruments can be utilized in searches for ultralight dark matter candidates, such as axionlike dark matter or dark-photon dark matter. In addition to being sensitive to an axion-photon coupling or kinetic mixing, which produce physical magnetic fields, ferromagnets are also sensitive to the effective magnetic field (or “axion wind”) produced by an axion-electron coupling. While the dynamics of a levitated ferromagnet in response to a dc magnetic field have been well studied, all of these couplings would produce ac fields. In this work, we study the response of a ferromagnet to an applied ac magnetic field and use these results to project their sensitivity to axion and dark-photon dark matter. We pay special attention to the direction of motion induced by an applied ac field, in particular, whether it precesses around the applied field (similar to an electron spin) or librates in the plane of the field (similar to a compass needle). We show that existing levitated ferromagnet setups can already have comparable sensitivity to an axion-electron coupling as comagnetometer or torsion balance experiments. In addition, future setups can become sensitive probes of axion-electron coupling, dark-photon kinetic mixing, and axion-photon coupling, for ultralight dark matter masses < 5feV. 
    more » « less
  8. We propose and demonstrate a general method to calibrate the frequency-dependent response of selfcompensating noble-gas–alkali-metal comagnetometers to arbitrary spin perturbations. This includes magnetic and nonmagnetic perturbations such as rotations and exotic spin interactions. The method is based on a fit of the magnetic field response to an analytical model. The frequency-dependent response of the comagnetometer to arbitrary spin perturbations can be inferred using the fit parameters. We demonstrate the effectiveness of this method by comparing the inferred rotation response to an experimental measurement of the rotation response. Our results show that experiments relying on zero-frequency calibration of the comagnetometer response can over- or underestimate the comagnetometer sensitivity by orders of magnitude over a wide frequency range. Moreover, this discrepancy accumulates over time as operational parameters tend to drift during comagnetometer operation. The demonstrated calibration protocol enables accurate prediction and control of comagnetometer sensitivity to, for example, ultralight bosonic dark-matter fields coupling to electron or nuclear spins, as well as accurate monitoring and control of the relevant system parameters. 
    more » « less