skip to main content


Search for: All records

Award ID contains: 2110507

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Several features in the mass spectrum of merging binary black holes (BBHs) have been identified using data from the Third Gravitational Wave Transient Catalog (GWTC-3). These features are of particular interest as they may encode the uncertain mechanism of BBH formation. We assess if the features are statistically significant or the result of Poisson noise due to the finite number of observed events. We simulate catalogs of BBHs whose underlying distribution does not have the features of interest, apply the analysis previously performed on GWTC-3, and determine how often such features are spuriously found. We find that one of the features found in GWTC-3, the peak at ∼35M, cannot be explained by Poisson noise alone: peaks as significant occur in 1.7% of catalogs generated from a featureless population. This peak is therefore likely to be of astrophysical origin. The data is suggestive of an additional significant peak at ∼10M, though the exact location of this feature is not resolvable with current observations. Additional structure beyond a power law, such as the purported dip at ∼14M, can be explained by Poisson noise. We also provide a publicly available package,GWMockCat, that creates simulated catalogs of BBH events with correlated measurement uncertainty and selection effects according to user-specified underlying distributions and detector sensitivities.

     
    more » « less
  2. Abstract

    As catalogs of gravitational-wave transients grow, new records are set for the most extreme systems observed to date. The most massive observed black holes probe the physics of pair-instability supernovae while providing clues about the environments in which binary black hole systems are assembled. The least massive black holes, meanwhile, allow us to investigate the purported neutron star–black hole mass gap, and binaries with unusually asymmetric mass ratios or large spins inform our understanding of binary and stellar evolution. Existing outlier tests generally implement leave-one-out analyses, but these do not account for the fact that the event being left out was by definition an extreme member of the population. This results in a bias in the evaluation of outliers. We correct for this bias by introducing a coarse-graining framework to investigate whether these extremal events are true outliers or whether they are consistent with the rest of the observed population. Our method enables us to study extremal events while testing for population model misspecification. We show that this ameliorates biases present in the leave-one-out analyses commonly used within the gravitational-wave community. Applying our method to results from the second LIGO–Virgo transient catalog, we find qualitative agreement with the conclusions of Abbott et al. GW190814 is an outlier because of its small secondary mass. We find that neither GW190412 nor GW190521 is an outlier.

     
    more » « less
  3. Abstract

    We search for features in the mass distribution of detected compact binary coalescences which signify the transition between neutron stars (NSs) and black holes (BHs). We analyze all gravitational-wave (GW) detections by the LIGO Scientific Collaboration, the Virgo Collaboration, and the KAGRA Collaboration (LVK) made through the end of the first half of the third observing run, and find clear evidence for two different populations of compact objects based solely on GW data. We confidently (99.3%) find a steepening relative to a single power law describing NSs and low-mass BHs below2.40.5+0.5M, which is consistent with many predictions for the maximum NS mass. We find suggestions of the purported lower mass gap between the most massive NSs and the least massive BHs, but are unable to conclusively resolve it with current data. If it exists, we find the lower mass gap’s edges to lie at2.20.5+0.7Mand6.01.4+2.4M. We reexamine events that have been deemed “exceptional” by the LVK collaborations in the context of these features. We analyze GW190814 self-consistently in the context of the full population of compact binaries, finding support for its secondary to be either a NS or a lower mass gap object, consistent with previous claims. Our models are the first to accommodate this event, which is an outlier with respect to the binary BH population. We find that GW200105 and GW200115 probe the edges of, and may have components within, the lower mass gap. As future data improve global population models, the classification of these events will also improve.

     
    more » « less
  4. Abstract We outline the “dark siren” galaxy catalog method for cosmological inference using gravitational wave (GW) standard sirens, clarifying some common misconceptions in the implementation of this method. When a confident transient electromagnetic counterpart to a GW event is unavailable, the identification of a unique host galaxy is in general challenging. Instead, as originally proposed by Schutz, one can consult a galaxy catalog and implement a dark siren statistical approach incorporating all potential host galaxies within the localization volume. Trott & Huterer recently claimed that this approach results in a biased estimate of the Hubble constant, H 0 , when implemented on mock data, even if optimistic assumptions are made. We demonstrate explicitly that, as previously shown by multiple independent groups, the dark siren statistical method leads to an unbiased posterior when the method is applied to the data correctly. We highlight common sources of error possible to make in the generation of mock data and implementation of the statistical framework, including the mismodeling of selection effects and inconsistent implementations of the Bayesian framework, which can lead to a spurious bias. 
    more » « less
    Free, publicly-accessible full text available June 22, 2024
  5. Abstract We use 47 gravitational wave sources from the Third LIGO–Virgo–Kamioka Gravitational Wave Detector Gravitational Wave Transient Catalog (GWTC–3) to estimate the Hubble parameter H ( z ), including its current value, the Hubble constant H 0 . Each gravitational wave (GW) signal provides the luminosity distance to the source, and we estimate the corresponding redshift using two methods: the redshifted masses and a galaxy catalog. Using the binary black hole (BBH) redshifted masses, we simultaneously infer the source mass distribution and H ( z ). The source mass distribution displays a peak around 34 M ⊙ , followed by a drop-off. Assuming this mass scale does not evolve with the redshift results in a H ( z ) measurement, yielding H 0 = 68 − 8 + 12 km s − 1 Mpc − 1 (68% credible interval) when combined with the H 0 measurement from GW170817 and its electromagnetic counterpart. This represents an improvement of 17% with respect to the H 0 estimate from GWTC–1. The second method associates each GW event with its probable host galaxy in the catalog GLADE+ , statistically marginalizing over the redshifts of each event’s potential hosts. Assuming a fixed BBH population, we estimate a value of H 0 = 68 − 6 + 8 km s − 1 Mpc − 1 with the galaxy catalog method, an improvement of 42% with respect to our GWTC–1 result and 20% with respect to recent H 0 studies using GWTC–2 events. However, we show that this result is strongly impacted by assumptions about the BBH source mass distribution; the only event which is not strongly impacted by such assumptions (and is thus informative about H 0 ) is the well-localized event GW190814. 
    more » « less
  6. Abstract The detection of the accelerated expansion of the Universe has been one of the major breakthroughs in modern cosmology. Several cosmological probes (Cosmic Microwave Background, Supernovae Type Ia, Baryon Acoustic Oscillations) have been studied in depth to better understand the nature of the mechanism driving this acceleration, and they are being currently pushed to their limits, obtaining remarkable constraints that allowed us to shape the standard cosmological model. In parallel to that, however, the percent precision achieved has recently revealed apparent tensions between measurements obtained from different methods. These are either indicating some unaccounted systematic effects, or are pointing toward new physics. Following the development of CMB, SNe, and BAO cosmology, it is critical to extend our selection of cosmological probes. Novel probes can be exploited to validate results, control or mitigate systematic effects, and, most importantly, to increase the accuracy and robustness of our results. This review is meant to provide a state-of-art benchmark of the latest advances in emerging “beyond-standard” cosmological probes. We present how several different methods can become a key resource for observational cosmology. In particular, we review cosmic chronometers, quasars, gamma-ray bursts, standard sirens, lensing time-delay with galaxies and clusters, cosmic voids, neutral hydrogen intensity mapping, surface brightness fluctuations, stellar ages of the oldest objects, secular redshift drift, and clustering of standard candles. The review describes the method, systematics, and results of each probe in a homogeneous way, giving the reader a clear picture of the available innovative methods that have been introduced in recent years and how to apply them. The review also discusses the potential synergies and complementarities between the various probes, exploring how they will contribute to the future of modern cosmology. 
    more » « less