skip to main content

Search for: All records

Award ID contains: 2110507

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    As catalogs of gravitational-wave transients grow, new records are set for the most extreme systems observed to date. The most massive observed black holes probe the physics of pair-instability supernovae while providing clues about the environments in which binary black hole systems are assembled. The least massive black holes, meanwhile, allow us to investigate the purported neutron star–black hole mass gap, and binaries with unusually asymmetric mass ratios or large spins inform our understanding of binary and stellar evolution. Existing outlier tests generally implement leave-one-out analyses, but these do not account for the fact that the event being left out was by definition an extreme member of the population. This results in a bias in the evaluation of outliers. We correct for this bias by introducing a coarse-graining framework to investigate whether these extremal events are true outliers or whether they are consistent with the rest of the observed population. Our method enables us to study extremal events while testing for population model misspecification. We show that this ameliorates biases present in the leave-one-out analyses commonly used within the gravitational-wave community. Applying our method to results from the second LIGO–Virgo transient catalog, we find qualitative agreement with the conclusionsmore »of Abbott et al. GW190814 is an outlier because of its small secondary mass. We find that neither GW190412 nor GW190521 is an outlier.

    « less
  2. Free, publicly-accessible full text available June 1, 2023
  3. Abstract We search for features in the mass distribution of detected compact binary coalescences which signify the transition between neutron stars (NSs) and black holes (BHs). We analyze all gravitational-wave (GW) detections by the LIGO Scientific Collaboration, the Virgo Collaboration, and the KAGRA Collaboration (LVK) made through the end of the first half of the third observing run, and find clear evidence for two different populations of compact objects based solely on GW data. We confidently (99.3%) find a steepening relative to a single power law describing NSs and low-mass BHs below 2.4 − 0.5 + 0.5 M ⊙ , which is consistent with many predictions for the maximum NS mass. We find suggestions of the purported lower mass gap between the most massive NSs and the least massive BHs, but are unable to conclusively resolve it with current data. If it exists, we find the lower mass gap’s edges to lie at 2.2 − 0.5 + 0.7 M ⊙ and 6.0 − 1.4 + 2.4 M ⊙ . We reexamine events that have been deemed “exceptional” by the LVK collaborations in the context of these features. We analyze GW190814 self-consistently in the context of the full population of compactmore »binaries, finding support for its secondary to be either a NS or a lower mass gap object, consistent with previous claims. Our models are the first to accommodate this event, which is an outlier with respect to the binary BH population. We find that GW200105 and GW200115 probe the edges of, and may have components within, the lower mass gap. As future data improve global population models, the classification of these events will also improve.« less
    Free, publicly-accessible full text available May 31, 2023
  4. Abstract Strong gravitational lensing of gravitational wave sources offers a novel probe of both the lens galaxy and the binary source population. In particular, the strong lensing event rate and the time-delay distribution of multiply imaged gravitational-wave binary coalescence events can be used to constrain the mass distribution of the lenses as well as the intrinsic properties of the source population. We calculate the strong lensing event rate for a range of second- (2G) and third-generation (3G) detectors, including Advanced LIGO/Virgo, A+, Einstein Telescope (ET), and Cosmic Explorer (CE). For 3G detectors, we find that ∼0.1% of observed events are expected to be strongly lensed. We predict detections of ∼1 lensing pair per year with A+, and ∼50 pairs per year with ET/CE. These rates are highly sensitive to the characteristic galaxy velocity dispersion, σ * , implying that observations of the rates will be a sensitive probe of lens properties. We explore using the time-delay distribution between multiply imaged gravitational-wave sources to constrain properties of the lenses. We find that 3G detectors would constrain σ * to ∼21% after 5 yr. Finally, we show that the presence or absence of strong lensing within the detected population provides useful insightsmore »into the source redshift and mass distribution out to redshifts beyond the peak of the star formation rate, which can be used to constrain formation channels and their relation to the star formation rate and delay-time distributions for these systems.« less
    Free, publicly-accessible full text available April 1, 2023
  5. Abstract On 2019 August 14 at 21:10:39 UTC, the LIGO/Virgo Collaboration (LVC) detected a possible neutron star–black hole merger (NSBH), the first ever identified. An extensive search for an optical counterpart of this event, designated GW190814, was undertaken using the Dark Energy Camera on the 4 m Victor M. Blanco Telescope at the Cerro Tololo Inter-American Observatory. Target of Opportunity interrupts were issued on eight separate nights to observe 11 candidates using the 4.1 m Southern Astrophysical Research (SOAR) telescope’s Goodman High Throughput Spectrograph in order to assess whether any of these transients was likely to be an optical counterpart of the possible NSBH merger. Here, we describe the process of observing with SOAR, the analysis of our spectra, our spectroscopic typing methodology, and our resultant conclusion that none of the candidates corresponded to the gravitational wave merger event but were all instead other transients. Finally, we describe the lessons learned from this effort. Application of these lessons will be critical for a successful community spectroscopic follow-up program for LVC observing run 4 (O4) and beyond.
    Free, publicly-accessible full text available April 1, 2023
  6. Abstract We present optical follow-up imaging obtained with the Katzman Automatic Imaging Telescope, Las Cumbres Observatory Global Telescope Network, Nickel Telescope, Swope Telescope, and Thacher Telescope of the LIGO/Virgo gravitational wave (GW) signal from the neutron star–black hole (NSBH) merger GW190814. We searched the GW190814 localization region (19 deg 2 for the 90th percentile best localization), covering a total of 51 deg 2 and 94.6% of the two-dimensional localization region. Analyzing the properties of 189 transients that we consider as candidate counterparts to the NSBH merger, including their localizations, discovery times from merger, optical spectra, likely host galaxy redshifts, and photometric evolution, we conclude that none of these objects are likely to be associated with GW190814. Based on this finding, we consider the likely optical properties of an electromagnetic counterpart to GW190814, including possible kilonovae and short gamma-ray burst afterglows. Using the joint limits from our follow-up imaging, we conclude that a counterpart with an r -band decline rate of 0.68 mag day −1 , similar to the kilonova AT 2017gfo, could peak at an absolute magnitude of at most −17.8 mag (50% confidence). Our data are not constraining for “red” kilonovae and rule out “blue” kilonovae with M >more »0.5 M ⊙ (30% confidence). We strongly rule out all known types of short gamma-ray burst afterglows with viewing angles <17° assuming an initial jet opening angle of ∼5.°2 and explosion energies and circumburst densities similar to afterglows explored in the literature. Finally, we explore the possibility that GW190814 merged in the disk of an active galactic nucleus, of which we find four in the localization region, but we do not find any candidate counterparts among these sources.« less
  7. null (Ed.)
  8. null (Ed.)