skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2110615

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We measured the covariance matrix of the fields generated in an integrated third-order optical parametric oscillator operating above threshold. We observed up to (2.3 ± 0.3) dB of squeezing in amplitude difference and inferred (4.9 ± 0.7) dB of on-chip squeezing, while an excess of noise for the sum of conjugated quadratures hinders the entanglement. The degradation of amplitude correlations and state purity for increasing the pump power is consistent with the observed growth of the phase noise of the fields, showing the necessity of strategies for phase noise control aiming at entanglement generation in these systems. 
    more » « less
  2. Discrete frequency modes, or bins, present a blend of opportunities and challenges for photonic quantum information processing. Frequency-bin-encoded photons are readily generated by integrated quantum light sources, naturally high-dimensional, stable in optical fiber, and massively parallelizable in a single spatial mode. Yet quantum operations on frequency-bin states require coherent and controllable multifrequency interference, making them significantly more challenging to manipulate than more traditional spatial degrees of freedom. In this mini-review, we describe recent developments that have transformed these challenges and propelled frequency bins forward. Focusing on sources, manipulation schemes, and detection approaches, we introduce the basics of frequency-bin encoding, summarize the state of the art, and speculate on the field’s next phases. Given the combined progress in integrated photonics, high-fidelity quantum gates, and proof-of-principle demonstrations, frequency-bin quantum information is poised to emerge from the lab and leave its mark on practical quantum information processing—particularly in networking where frequency bins offer unique tools for multiplexing, interconnects, and high-dimensional communications. 
    more » « less
  3. We propose multipartite Bragg-scattering to perform all-to-all transformation among N frequency modes, realizing a bosonic N-level system. We demonstrate the N = 3 case illustrating a pathway towards scalability for frequency-domain optical quantum information systems. 
    more » « less
  4. We theoretically and experimentally investigate the noise properties of four-wave mixing-based optical-parametric oscillators (OPOs) in silicon nitride microresonators. Such OPOs can operate at ultralow-noise levels and serve as a dual-point source for optical- frequency division. 
    more » « less
  5. We demonstrate a novel approach to actively and continuously tune the coupling condition of microresonators. Our approach allows for wavelength-dependent coupling and dispersion modification after fabrication. 
    more » « less
  6. Cross quadrature correlations are observed from the spectral matrices of two-mode bright states generated in an integrated optical parametric oscillator. We attribute degradation of amplitude difference squeezing with increasing pump intensities to this effect. 
    more » « less
  7. Using silicon-nitride microresonators with integrated Moiré-Bragg gratings to suppress parasitic nonlinear processes, we demonstrate on-chip frequency conversion to a single idler tone with a record-high 71% efficiency using Bragg scattering four-wave-mixing. 
    more » « less
  8. We propose and analyze a room-temperature photon-number-resolving detection scheme based on cascaded sum-frequency generation. We measure an effective |n2| of 6×10−12 cm2/W in lithium niobate, which is 600x larger than the intrinsic value. 
    more » « less
  9. We perform classical unitary conversion between three frequencies mediated by Bragg-scattering four-wave mixing with three pump fields. In the quantum regime, such a scheme can be scaled to realize N-frequency-bin W-states and boson sampling. 
    more » « less
  10. Microresonator-based platforms withnonlinearities have the potential to perform frequency conversion at high efficiencies and ultralow powers with small footprints. The standard doctrine for achieving high conversion efficiency in cavity-based devices requires “perfect matching,” that is, zero phase mismatch while all relevant frequencies are precisely at a cavity resonance, which is difficult to achieve in integrated platforms due to fabrication errors and limited tunabilities. In this Letter, we show that the violation of perfect matching does not necessitate a reduction in conversion efficiency. On the contrary, in many cases, mismatches should be intentionally introduced to improve the efficiency or tunability of conversion. We identify the universal conditions for maximizing the efficiency of cavity-based frequency conversion and show a straightforward approach to fully compensate for parasitic processes such as thermorefractive and photorefractive effects that, typically, can limit the conversion efficiency. We also show the design criteria that make these high-efficiency states stable against nonlinearity-induced instabilities. 
    more » « less