skip to main content


Search for: All records

Award ID contains: 2110821

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We discuss implications that can be obtained by searches for neutrinos from the brightest gamma-ray burst (GRB), GRB 221009A. We derive constraints on GRB model parameters such as the cosmic-ray loading factor and dissipation radius, taking into account both neutrino spectra and effective areas. The results are strong enough to constrain proton acceleration near the photosphere, and we find that the single burst limits are comparable to those from stacking analysis. Quasi-thermal neutrinos from subphotospheres and ultra-high-energy neutrinos from external shocks are not yet constrained. We show that GeV–TeV neutrinos originating from neutron collisions are detectable, and urge dedicated analysis on these neutrinos with DeepCore and IceCube as well as ORCA and KM3NeT.

     
    more » « less
  2. Abstract γ -ray observations of the Cygnus Cocoon, an extended source surrounding the Cygnus X star-forming region, suggest the presence of a cosmic-ray accelerator reaching energies up to a few PeV. The very-high-energy (VHE; 0.1–100 TeV) γ -ray emission may be explained by the interaction of cosmic-ray hadrons with matter inside the Cocoon, but an origin of inverse Compton radiation by relativistic electrons cannot be ruled out. Inverse Compton γ -rays at VHE are accompanied by synchrotron radiation peaked in X-rays. Hence, X-ray observations may probe the electron population and magnetic field of the source. We observed 11 fields in or near the Cygnus Cocoon with the Neil Gehrels Swift Observatory’s X-Ray Telescope (Swift-XRT) totaling 110 ks. We fit the fields to a Galactic and extragalactic background model and performed a log-likelihood ratio test for an additional diffuse component. We found no significant additional emission and established upper limits in each field. By assuming that the X-ray intensity traces the TeV intensity and follows a dN / dE ∝ E − 2.5 spectrum, we obtained a 90% upper limit of F X < 8.7 × 10 −11 erg cm −2 s −1 or <5.2 × 10 −11 erg cm −2 s −1 on the X-ray flux of the entire Cygnus Cocoon between 2 and 10 keV depending on the choice of hydrogen column density model for the absorption. The obtained upper limits suggest that no more than one-quarter of the γ -ray flux at 1 TeV is produced by inverse Compton scattering, when assuming an equipartition magnetic field of ∼20 μ G. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  3. Abstract Extended very-high-energy (VHE; 0.1–100 TeV) γ -ray emission has been observed around several middle-aged pulsars and referred to as “TeV halos.” Their formation mechanism remains under debate. It is also unknown whether they are ubiquitous or related to a certain subgroup of pulsars. With 2321 days of observation, the High Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory detected VHE γ -ray emission at the location of the radio-quiet pulsar PSR J0359+5414 with >6 σ significance. By performing likelihood tests with different spectral and spatial models and comparing the TeV spectrum with multiwavelength observations of nearby sources, we show that this excess is consistent with a TeV halo associated with PSR J0359+5414, though future observation of HAWC and multiwavelength follow-ups are needed to confirm this nature. This new halo candidate is located in a noncrowded region in the outer galaxy. It shares similar properties to the other halos but its pulsar is younger and radio-quiet. Our observation implies that TeV halos could commonly exist around pulsars and their formation does not depend on the configuration of the pulsar magnetosphere. 
    more » « less
  4. Abstract We present a broadband X-ray study of W50 (the “Manatee” nebula), the complex region powered by the microquasar SS 433, that provides a test bed for several important astrophysical processes. The W50 nebula, a Galactic PeVatron candidate, is classified as a supernova remnant but has an unusual double-lobed morphology likely associated with the jets from SS 433. Using NuSTAR, XMM-Newton, and Chandra observations of the inner eastern lobe of W50, we have detected hard nonthermal X-ray emission up to ∼30 keV, originating from a few-arcminute-sized knotty region (“Head”) located ≲18′ (29 pc for a distance of 5.5 kpc) east of SS 433, and constrained its photon index to 1.58 ± 0.05 (0.5–30 keV band). The index gradually steepens eastward out to the radio “ear” where thermal soft X-ray emission with a temperature kT ∼ 0.2 keV dominates. The hard X-ray knots mark the location of acceleration sites within the jet and require an equipartition magnetic field of the order of ≳12 μ G. The unusually hard spectral index from the “Head” region challenges classical particle acceleration processes and points to particle injection and reacceleration in the subrelativistic SS 433 jet, as seen in blazars and pulsar wind nebulae. 
    more » « less
  5. Abstract The diffuse flux of cosmic neutrinos has been measured by the IceCube Observatory from TeV to PeV energies. We show that an improved characterization of this flux at lower energies, TeV and sub-TeV, reveals important information on the nature of the astrophysical neutrino sources in a model-independent way. Most significantly, it could confirm the present indications that neutrinos originate in cosmic environments that are optically thick to GeV–TeV γ -rays. This conclusion will become inevitable if an uninterrupted or even steeper neutrino power law is observed in the TeV region. In such γ -ray-obscured sources, the γ -rays that inevitably accompany cosmic neutrinos will cascade down to MeV–GeV energies. The requirement that the cascaded γ -ray flux accompanying cosmic neutrinos should not exceed the observed diffuse γ -ray background puts constraints on the peak energy and density of the radiation fields in the sources. Our calculations inspired by the existing data suggest that a fraction of the observed diffuse MeV–GeV γ -ray background may be contributed by neutrino sources with intense radiation fields that obscure the high-energy γ -ray emission accompanying the neutrinos. 
    more » « less
  6. Abstract The High Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory surveys the very high-energy sky in the 300 GeV to >100 TeV energy range. HAWC has detected two blazars above 11 σ , Markarian 421 (Mrk 421) and Markarian 501 (Mrk 501). The observations are comprised of data taken in the period between 2015 June and 2018 July, resulting in ∼1038 days of exposure. In this work, we report the time-averaged spectral analyses for both sources, above 0.5 TeV. Taking into account the flux attenuation due to the extragalactic background light, the intrinsic spectrum of Mrk 421 is described by a power law with an exponential energy cutoff with index α = 2.26 ± 0.12 stat − 0.2 + 0.17 sys and energy cutoff E c = 5.1 ± 1.6 stat − 2.5 + 1.4 sys TeV, while the intrinsic spectrum of Mrk 501 is better described by a simple power law with index α = 2.61 ± 0.11 stat − 0.07 + 0.01 sys . The maximum energies at which the Mrk 421 and Mrk 501 signals are detected are 9 and 12 TeV, respectively. This makes these some of the highest energy detections to date for spectra averaged over years-long timescales. Since the observation of gamma radiation from blazars provides information about the physical processes that take place in their relativistic jets, it is important to study the broadband spectral energy distributions (SEDs) of these objects. For this purpose, contemporaneous data in the gamma-ray band to the X-ray range, and literature data in the radio to UV range, were used to build time-averaged SEDs that were modeled within a synchrotron-self Compton leptonic scenario. 
    more » « less