Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Our RLibm project has recently proposed methods to generate a single implementation for an elementary function that produces correctly rounded results for multiple rounding modes and representations with up to 32-bits. They are appealing for developing fast reference libraries without double rounding issues. The key insight is to build polynomial approximations that produce the correctly rounded result for a representation with two additional bits when compared to the largest target representation and with the “non-standard” round-to-odd rounding mode, which makes double rounding the RLibm math library result to any smaller target representation innocuous. The resulting approximations generated by the RLibm approach are implemented with machine supported floating-point operations with the round-to-nearest rounding mode. When an application uses a rounding mode other than the round-to-nearest mode, the RLibm math library saves the application’s rounding mode, changes the system’s rounding mode to round-to-nearest, computes the correctly rounded result, and restores the application’s rounding mode. This frequent change of rounding modes has a performance cost. This paper proposes two new methods, which we call rounding-invariant outputs and rounding-invariant input bounds, to avoid the frequent changes to the rounding mode and the dependence on the round-to-nearest mode. First, our new rounding-invariant outputs method proposes using the round-to-zero rounding mode to implement RLibm’s polynomial approximations. We propose fast, error-free transformations to emulate a round-to-zero result from any standard rounding mode without changing the rounding mode. Second, our rounding-invariant input bounds method factors any rounding error due to different rounding modes using interval bounds in the RLibm pipeline. Both methods make a different set of trade-offs and improve the performance of resulting libraries by more than 2×more » « lessFree, publicly-accessible full text available June 18, 2026
-
This paper proposes a novel method to efficiently solveinfeasiblelow-dimensional linear programs (LDLPs) with billions of constraints and a small number of unknown variables, where all the constraints cannot be satisfied simultaneously. We focus on infeasible linear programs generated in the RLibmproject for creating correctly rounded math libraries. Specifically, we are interested in generating a floating point solution that satisfies the maximum number of constraints. None of the existing methods can solve such large linear programs while producing floating point solutions. We observe that the convex hull can serve as an intermediate representation (IR) for solving infeasible LDLPs using the geometric duality between linear programs and convex hulls. Specifically, some of the constraints that correspond to points on the convex hull are precisely those constraints that make the linear program infeasible. Our key idea is to split the entire set of constraints into two subsets using the convex hull IR: (a) a set of feasible constraints and (b) a superset of infeasible constraints. Using the special structure of the RLibmconstraints and the presence of a method to check whether a system is feasible or not. we identify a superset of infeasible constraints by computing the convex hull in 2-dimensions. Subsequently, we identify the key constraints (i.e., basis constraints) in the set of feasible constraints and use them to create a new linear program whose solution identifies the maximum set of constraints satisfiable in while satisfying all the constraints in . This new solver enabled us to improve the performance of the resulting RLibmpolynomials while solving the corresponding linear programs significantly faster.more » « less
-
This paper proposes fast polynomial evaluation methods for correctly rounded elementary functions generated using our RLibm approach. The resulting functions produce correct results for all inputs with multiple representations and rounding modes. Given an oracle, the RLibm approach approximates the correctly rounded result rather than the real value of an elementary function. A key observation is that there is an interval of real values around the correctly rounded result such that any real value in it rounds to the correct result. This interval is the maximum freedom available to RLibm’s polynomial generation procedure. Subsequently, the problem of generating correctly rounded elementary functions using these intervals can be structured as a linear programming problem. Our prior work on the RLibm approach uses Horner’s method for polynomial evaluation. This paper explores polynomial evaluation techniques such as Knuth’s coefficient adaptation procedure, parallel execution of operations using Estrin’s procedure, and the use of fused multiply-add operations in the context of the RLibm approach. If we take the polynomial generated by the RLibm approach and subsequently perform polynomial evaluation optimizations, it results in incorrect results due to rounding errors during polynomial evaluation. Hence, we propose to integrate the fast polynomial evaluation procedure in the RLibm’s polynomial generation process. Our new polynomial evaluation procedure that combines parallel execution with fused multiply-add operations outperforms the Horner’s method used by RLibm’s correctly rounded functions. We show the resulting polynomials for 32-bit float are not only correct but also faster than prior functions in RLibm by 24%more » « less
-
This paper proposes, EFTSanitizer, a fast shadow execution framework for detecting and debugging numerical errors during late stages of testing especially for long-running applications. Any shadow execution framework needs an oracle to compare against the floating point (FP) execution. This paper makes a case for using error free transformations, which is a sequence of operations to compute the error of a primitive operation with existing hardware supported FP operations, as an oracle for shadow execution. Although the error of a single correctly rounded FP operation is bounded, the accumulation of errors across operations can result in exceptions, slow convergences, and even crashes. To ease the job of debugging such errors, EFTSanitizer provides a directed acyclic graph (DAG) that highlights the propagation of errors, which results in exceptions or crashes. Unlike prior work, DAGs produced by EFTSanitizer include operations that span various function calls while keeping the memory usage bounded. To enable the use of such shadow execution tools with long-running applications, EFTSanitizer also supports starting the shadow execution at an arbitrary point in the dynamic execution, which we call selective shadow execution. EFTSanitizer is an order of magnitude faster than prior state-of-art shadow execution tools such as FPSanitizer and Herbgrind. We have discovered new numerical errors and debugged them using EFTSanitizer.more » « less
-
This paper presents a novel method for generating a single polynomial approximation that produces correctly rounded results for all inputs of an elementary function for multiple representations. The generated polynomial approximation has the nice property that the first few lower degree terms produce correctly rounded results for specific representations of smaller bitwidths, which we call progressive performance. To generate such progressive polynomial approximations, we approximate the correctly rounded result and formulate the computation of correctly rounded polynomial approximations as a linear program similar to our prior work on the RLIBM project. To enable the use of resulting polynomial approximations in mainstream libraries, we want to avoid piecewise polynomials with large lookup tables. We observe that the problem of computing polynomial approximations for elementary functions is a linear programming problem in low dimensions, i.e., with a small number of unknowns. We design a fast randomized algorithm for computing polynomial approximations with progressive performance. Our method produces correct and fast polynomials that require a small amount of storage. A few polynomial approximations from our prototype have already been incorporated into LLVM’s math library.more » « less
-
Mainstream math libraries for floating point (FP) do not produce correctly rounded results for all inputs. In contrast, CR-LIBM and RLIBM provide correctly rounded implementations for a specific FP representation with one rounding mode. Using such libraries for a representation with a new rounding mode or with different precision will result in wrong results due to double rounding. This paper proposes a novel method to generate a single polynomial approximation that produces correctly rounded results for all inputs for multiple rounding modes and multiple precision configurations. To generate a correctly rounded library forn-bits, our key idea is to generate a polynomial approximation for a representation withn+2-bits using theround-to-oddmode. We prove that the resulting polynomial approximation will produce correctly rounded results for all five rounding modes in the standard and for multiple representations withk-bits such that |E| +1 <k≤n, where |E| is the number of exponent bits in the representation. Similar to our prior work in the RLIBM project, we approximate the correctly rounded result when we generate the library withn+2-bits using the round-to-odd mode. We also generate polynomial approximations by structuring it as a linear programming problem but propose enhancements to polynomial generation to handle the round-to-odd mode. Our prototype is the first 32-bit float library that produces correctly rounded results with all rounding modes in the IEEE standard for all inputs with a single polynomial approximation. It also produces correctly rounded results for any FP configuration ranging from 10-bits to 32-bits while also being faster than mainstream libraries.more » « less
-
null (Ed.)This paper proposes a new approach for debugging errors in floating point computation by performing shadow execution with higher precision in parallel. The programmer specifies parts of the program that need to be debugged for errors. Our compiler creates shadow execution tasks, which execute on different cores and perform the computation with higher precision. We propose a novel method to execute a shadow execution task from an arbitrary memory state, which is necessary because we are creating a parallel shadow execution from a sequential program. Our approach also ensures that the shadow execution follows the same control flow path as the original program. Our runtime automatically distributes the shadow execution tasks to balance the load on the cores. Our prototype for parallel shadow execution, PFPSanitizer, provides comprehensive detection of errors while having lower performance overheads than prior approaches.more » « less
An official website of the United States government
