skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2110922

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The Poisson–Boltzmann (PB) model is a widely used electrostatic model for biomolecular solvation analysis. Formulated as an elliptic interface problem, the PB model can be numerically solved on either Eulerian meshes using finite difference/finite element methods or Lagrangian meshes using boundary element methods. Molecular surface generators, which produce the discretized dielectric interfaces between solutes and solvents, are critical factors in determining the accuracy and efficiency of the PB solvers. In this work, we investigate the utility of the Eulerian Solvent Excluded Surface (ESES) software for rendering conjugated Eulerian and Lagrangian surface representations, which enables us to numerically validate and compare the quality of Eulerian PB solvers, such as the MIBPB solver, and the Lagrangian PB solvers, such as the TABI‐PB solver. Furthermore, with the ESES software and its associated PB solvers, we are able to numerically validate an interesting and useful but often neglected source‐target symmetric property associated with the linearized PB model. 
    more » « less
  2. Monte Carlo (MC) methods are important computational tools for molecular structure optimizations and predictions. When solvent effects are explicitly considered, MC methods become very expensive due to the large degree of freedom associated with the water molecules and mobile ions. Alternatively implicit-solvent MC can largely reduce the computational cost by applying a mean field approximation to solvent effects and meanwhile maintains the atomic detail of the target molecule. The two most popular implicit-solvent models are the Poisson-Boltzmann (PB) model and the Generalized Born (GB) model in a way such that the GB model is an approximation to the PB model but is much faster in simulation time. In this work, we develop a machine learning-based implicit-solvent Monte Carlo (MLIMC) method by combining the advantages of both implicit solvent models in accuracy and efficiency. Specifically, the MLIMC method uses a fast and accurate PB-based machine learning (PBML) scheme to compute the electrostatic solvation free energy at each step. We validate our MLIMC method by using a benzene-water system and a protein-water system. We show that the proposed MLIMC method has great advantages in speed and accuracy for molecular structure optimization and prediction. 
    more » « less