skip to main content

Search for: All records

Award ID contains: 2111069

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Synopsis The rapid expansion of genome sequence data is increasing the discovery of protein-coding genes across all domains of life. Annotating these genes with reliable functional information is necessary to understand evolution, to define the full biochemical space accessed by nature, and to identify target genes for biotechnology improvements. The majority of proteins are annotated based on sequence conservation with no specific biological, biochemical, genetic, or cellular function identified. Recent technical advances throughout the biological sciences enable experimental research on these understudied protein-coding genes in a broader collection of species. However, scientists have incentives and biases to continue focusing on well documented genes within their preferred model organism. This perspective suggests a research model that seeks to break historic silos of research bias by enabling interdisciplinary teams to accelerate biological functional annotation. We propose an initiative to develop coordinated projects of collaborating evolutionary biologists, cell biologists, geneticists, and biochemists that will focus on subsets of target genes in multiple model organisms. Concurrent analysis in multiple organisms takes advantage of evolutionary divergence and selection, which causes individual species to be better suited as experimental models for specific genes. Most importantly, multisystem approaches would encourage transdisciplinary critical thinking and hypothesis testing thatmore »is inherently slow in current biological research.« less
  2. Reed, B H (Ed.)
    Abstract Protein components of the invertebrate occluding junction—known as the septate junction (SJ)—are required for morphogenetic developmental events during embryogenesis in Drosophila melanogaster. In order to determine whether SJ proteins are similarly required for morphogenesis during other developmental stages, we investigated the localization and requirement of four representative SJ proteins during oogenesis: Contactin, Macroglobulin complement-related, Neurexin IV, and Coracle. A number of morphogenetic processes occur during oogenesis, including egg elongation, formation of dorsal appendages, and border cell (BC) migration. We found that all four SJ proteins are expressed in egg chambers throughout oogenesis, with the highest and the most sustained levels in the follicular epithelium (FE). In the FE, SJ proteins localize along the lateral membrane during early and mid-oogenesis, but become enriched in an apical-lateral domain (the presumptive SJ) by stage 11. SJ protein relocalization requires the expression of other SJ proteins, as well as Rab5 and Rab11 like SJ biogenesis in the embryo. Knocking down the expression of these SJ proteins in follicle cells throughout oogenesis results in egg elongation defects and abnormal dorsal appendages. Similarly, reducing the expression of SJ genes in the BC cluster results in BC migration defects. Together, these results demonstrate an essential requirementmore »for SJ genes in morphogenesis during oogenesis, and suggest that SJ proteins may have conserved functions in epithelial morphogenesis across developmental stages.« less
  3. The septate junction (SJ) provides an occluding function for epithelial tissues in invertebrate organisms. This ability to seal the paracellular route between cells allows internal tissues to create unique compartments for organ function and endows the epidermis with a barrier function to restrict the passage of pathogens. Over the past twenty-five years, numerous investigators have identified more than 30 proteins that are required for the formation or maintenance of the SJs in Drosophila melanogaster, and have determined many of the steps involved in the biogenesis of the junction. Along the way, it has become clear that SJ proteins are also required for a number of developmental events that occur throughout the life of the organism. Many of these developmental events occur prior to the formation of the occluding junction, suggesting that SJ proteins possess non-occluding functions. In this review, we will describe the composition of SJs, taking note of which proteins are core components of the junction versus resident or accessory proteins, and the steps involved in the biogenesis of the junction. We will then elaborate on the functions that core SJ proteins likely play outside of their role in forming the occluding junction and describe studies that provide somemore »cell biological perspectives that are beginning to provide mechanistic understanding of how these proteins function in developmental contexts.« less