Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract A search for leptoquark pair production decaying into$$te^- \bar{t}e^+$$ or$$t\mu ^- \bar{t}\mu ^+$$ in final states with multiple leptons is presented. The search is based on a dataset ofppcollisions at$$\sqrt{s}=13~\text {TeV} $$ recorded with the ATLAS detector during Run 2 of the Large Hadron Collider, corresponding to an integrated luminosity of 139 fb$$^{-1}$$ . Four signal regions, with the requirement of at least three light leptons (electron or muon) and at least two jets out of which at least one jet is identified as coming from ab-hadron, are considered based on the number of leptons of a given flavour. The main background processes are estimated using dedicated control regions in a simultaneous fit with the signal regions to data. No excess above the Standard Model background prediction is observed and 95% confidence level limits on the production cross section times branching ratio are derived as a function of the leptoquark mass. Under the assumption of exclusive decays into$$te^{-}$$ ($$t\mu ^{-}$$ ), the corresponding lower limit on the scalar mixed-generation leptoquark mass$$m_{\textrm{LQ}_{\textrm{mix}}^{\textrm{d}}}$$ is at 1.58 (1.59) TeV and on the vector leptoquark mass$$m_{{\tilde{U}}_1}$$ at 1.67 (1.67) TeV in the minimal coupling scenario and at 1.95 (1.95) TeV in the Yang–Mills scenario.more » « less
-
A<sc>bstract</sc> A combination of searches for new heavy spin-1 resonances decaying into different pairings ofW,Z, or Higgs bosons, as well as directly into leptons or quarks, is presented. The data sample used corresponds to 139 fb−1of proton-proton collisions at$$ \sqrt{s} $$ = 13 TeV collected during 2015–2018 with the ATLAS detector at the CERN Large Hadron Collider. Analyses selecting quark pairs (qq,bb,$$ t\overline{t} $$ , andtb) or third-generation leptons (τνandττ) are included in this kind of combination for the first time. A simplified model predicting a spin-1 heavy vector-boson triplet is used. Cross-section limits are set at the 95% confidence level and are compared with predictions for the benchmark model. These limits are also expressed in terms of constraints on couplings of the heavy vector-boson triplet to quarks, leptons, and the Higgs boson. The complementarity of the various analyses increases the sensitivity to new physics, and the resulting constraints are stronger than those from any individual analysis considered. The data exclude a heavy vector-boson triplet with mass below 5.8 TeV in a weakly coupled scenario, below 4.4 TeV in a strongly coupled scenario, and up to 1.5 TeV in the case of production via vector-boson fusion.more » « less
-
A<sc>bstract</sc> A search for new heavy scalars with flavour-violating decays in final states with multiple leptons andb-tagged jets is presented. The results are interpreted in terms of a general two-Higgs-doublet model involving an additional scalar with couplings to the top-quark and the three up-type quarks (ρtt,ρtc, andρtu). The targeted signals lead to final states with either a same-sign top-quark pair, three top-quarks, or four top-quarks. The search is based on a data sample of proton-proton collisions at$$ \sqrt{s} $$ = 13 TeV recorded with the ATLAS detector during Run 2 of the Large Hadron Collider, corresponding to an integrated luminosity of 139 fb−1. Events are categorised depending on the multiplicity of light charged leptons (electrons or muons), total lepton charge, and a deep-neural-network output to enhance the purity of each of the signals. Masses of an additional scalar bosonmHbetween 200 − 630 GeV with couplingsρtt= 0.4,ρtc= 0.2, andρtu= 0.2 are excluded at 95% confidence level. Additional interpretations are provided in models ofR-parity violating supersymmetry, motivated by the recent flavour and (g −2)μanomalies.more » « less
-
A search for high-mass resonances decaying into a -lepton and a neutrino using proton-proton collisions at a center-of-mass energy of is presented. The full run 2 data sample corresponding to an integrated luminosity of recorded by the ATLAS experiment in the years 2015–2018 is analyzed. The -lepton is reconstructed in its hadronic decay modes and the total transverse momentum carried out by neutrinos is inferred from the reconstructed missing transverse momentum. The search for new physics is performed on the transverse mass between the -lepton and the missing transverse momentum. No excess of events above the Standard Model expectation is observed and upper exclusion limits are set on the production cross section. Heavy vector bosons with masses up to 5.0 TeV are excluded at 95% confidence level, assuming that they have the same couplings as the Standard Model boson. For nonuniversal couplings, bosons are excluded for masses less than 3.5–5.0 TeV, depending on the model parameters. In addition, model-independent limits on the visible cross section times branching ratio are determined as a function of the lower threshold on the transverse mass of the -lepton and missing transverse momentum. © 2024 CERN, for the ATLAS Collaboration2024CERNmore » « less
An official website of the United States government
