skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2111738

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The 15 yr pulsar timing data set collected by the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) shows positive evidence for the presence of a low-frequency gravitational-wave (GW) background. In this paper, we investigate potential cosmological interpretations of this signal, specifically cosmic inflation, scalar-induced GWs, first-order phase transitions, cosmic strings, and domain walls. We find that, with the exception of stable cosmic strings of field theory origin, all these models can reproduce the observed signal. When compared to the standard interpretation in terms of inspiraling supermassive black hole binaries (SMBHBs), many cosmological models seem to provide a better fit resulting in Bayes factors in the range from 10 to 100. However, these results strongly depend on modeling assumptions about the cosmic SMBHB population and, at this stage, should not be regarded as evidence for new physics. Furthermore, we identify excluded parameter regions where the predicted GW signal from cosmological sources significantly exceeds the NANOGrav signal. These parameter constraints are independent of the origin of the NANOGrav signal and illustrate how pulsar timing data provide a new way to constrain the parameter space of these models. Finally, we search for deterministic signals produced by models of ultralight dark matter (ULDM) and dark matter substructures in the Milky Way. We find no evidence for either of these signals and thus report updated constraints on these models. In the case of ULDM, these constraints outperform torsion balance and atomic clock constraints for ULDM coupled to electrons, muons, or gluons. 
    more » « less
  2. Abstract We perform a detailed comparison of the dynamics of cosmic stringloops obtained in cosmological field theory simulations with their expected motion according to theNambu-Goto action. We demonstrate that these loops follow thetrajectories predicted within the NG effective theory except in regionsof high curvature where energy is emitted from the loop in the form of massiveradiation. This energy loss continues for all the loopsstudied in this simulation until they self-intersect or become small enough that they annihilateand disappear well before they complete a single oscillation. We comment on the relevance of thisinvestigation to the interpretation of the results from cosmological field theory simulationsas well as their extrapolation to a cosmological context. 
    more » « less
  3. {"Abstract":["MCMC chains for the GWB analyses performed in the paper "The NANOGrav 15 yr Data Set: Search for Signals from New Physics<\/em>". <\/p>\n\nThe data is provided in pickle format. Each file contains a NumPy array with the MCMC chain (with burn-in already removed), and a dictionary with the model parameters' names as keys and their priors as values. You can load them as<\/p>\n\nwith open ('path/to/file.pkl', 'rb') as pick:\n temp = pickle.load(pick)\n\n params = temp[0]\n chain = temp[1]<\/code>\n\nThe naming convention for the files is the following:<\/p>\n\nigw<\/strong>: inflationary Gravitational Waves (GWs)<\/li>sigw: scalar-induced GWs\n\tsigw_box<\/strong>: assumes a box-like feature in the primordial power spectrum.<\/li>sigw_delta<\/strong>: assumes a delta-like feature in the primordial power spectrum.<\/li>sigw_gauss<\/strong>: assumes a Gaussian peak feature in the primordial power spectrum.<\/li><\/ul>\n\t<\/li>pt: cosmological phase transitions\n\tpt_bubble<\/strong>: assumes that the dominant contribution to the GW productions comes from bubble collisions.<\/li>pt_sound<\/strong>: assumes that the dominant contribution to the GW productions comes from sound waves.<\/li><\/ul>\n\t<\/li>stable: stable cosmic strings\n\tstable-c<\/strong>: stable strings emitting GWs only in the form of GW bursts from cusps on closed loops.<\/li>stable-k<\/strong>: stable strings emitting GWs only in the form of GW bursts from kinks on closed loops.<\/li>stable<\/strong>-m<\/strong>: stable strings emitting monochromatic GW at the fundamental frequency.<\/li>stable-n<\/strong>: stable strings described by numerical simulations including GWs from cusps and kinks.<\/li><\/ul>\n\t<\/li>meta: metastable cosmic strings\n\tmeta<\/strong>-l<\/strong>: metastable strings with GW emission from loops only.<\/li>meta-ls<\/strong> metastable strings with GW emission from loops and segments.<\/li><\/ul>\n\t<\/li>super<\/strong>: cosmic superstrings.<\/li>dw: domain walls\n\tdw-sm<\/strong>: domain walls decaying into Standard Model particles.<\/li>dw-dr<\/strong>: domain walls decaying into dark radiation.<\/li><\/ul>\n\t<\/li><\/ul>\n\nFor each model, we provide four files. One for the run where the new-physics signal is assumed to be the only GWB source. One for the run where the new-physics signal is superimposed to the signal from Supermassive Black Hole Binaries (SMBHB), for these files "_bhb" will be appended to the model name. Then, for both these scenarios, in the "compare" folder we provide the files for the hypermodel runs that were used to derive the Bayes' factors.<\/p>\n\nIn addition to chains for the stochastic models, we also provide data for the two deterministic models considered in the paper (ULDM and DM substructures). For the ULDM model, the naming convention of the files is the following (all the ULDM signals are superimposed to the SMBHB signal, see the discussion in the paper for more details)<\/p>\n\nuldm_e<\/strong>: ULDM Earth signal.<\/li>uldm_p: ULDM pulsar signal\n\tuldm_p_cor<\/strong>: correlated limit<\/li>uldm_p_unc<\/strong>: uncorrelated limit<\/li><\/ul>\n\t<\/li>uldm_c: ULDM combined Earth + pulsar signal direct coupling \n\tuldm_c_cor<\/strong>: correlated limit<\/li>uldm_c_unc<\/strong>: uncorrelated limit<\/li><\/ul>\n\t<\/li>uldm_vecB: vector ULDM coupled to the baryon number\n\tuldm_vecB_cor:<\/strong> correlated limit<\/li>uldm_vecB_unc<\/strong>: uncorrelated limit <\/li><\/ul>\n\t<\/li>uldm_vecBL: vector ULDM coupled to B-L\n\tuldm_vecBL_cor:<\/strong> correlated limit<\/li>uldm_vecBL_unc<\/strong>: uncorrelated limit<\/li><\/ul>\n\t<\/li>uldm_c_grav: ULDM combined Earth + pulsar signal for gravitational-only coupling\n\tuldm_c_grav_cor: correlated limit\n\t\tuldm_c_cor_grav_low<\/strong>: low mass region  <\/li>uldm_c_cor_grav_mon<\/strong>: monopole region<\/li>uldm_c_cor_grav_low<\/strong>: high mass region<\/li><\/ul>\n\t\t<\/li>uldm_c_unc<\/strong>: uncorrelated limit\n\t\tuldm_c_unc_grav_low<\/strong>: low mass region  <\/li>uldm_c_unc_grav_mon<\/strong>: monopole region<\/li>uldm_c_unc_grav_low<\/strong>: high mass region<\/li><\/ul>\n\t\t<\/li><\/ul>\n\t<\/li><\/ul>\n\nFor the substructure (static) model, we provide the chain for the marginalized distribution (as for the ULDM signal, the substructure signal is always superimposed to the SMBHB signal)<\/p>"]} 
    more » « less