skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2112635

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Understanding students’ multi-party epistemic and topic based-dialogue contributions, or how students present knowledge in group-based chat interactions during collaborative game-based learning, offers valuable insights into group dynamics and learning processes. However, manually annotating these contributions is labor-intensive and challenging. To address this, we develop an automated method for recognizing dialogue acts from text chat data of small groups of middle school students interacting in a collaborative game-based learning environment. Our approach utilizes dual contrastive learning and label-aware data augmentation to fine-tune large language models’ underlying embedding representations within a supervised learning framework for epistemic and topic-based dialogue act classification. Results show that our method achieves a performance improvement of 4% to 8% over baseline methods in two key classification scenarios. These findings highlight the potential for automated dialogue act recognition to support understanding of how meaning-making occurs by focusing on the development and evolution of knowledge in group discourse, ultimately providing teachers with actionable insights to better support student learning. 
    more » « less
  2. Abstract The EngageAI Institute focuses on AI‐driven narrative‐centered learning environments that create engaging story‐based problem‐solving experiences to support collaborative learning. The institute's research has three complementary strands. First, the institute creates narrative‐centered learning environments that generate interactive story‐based problem scenarios to elicit rich communication, encourage coordination, and spark collaborative creativity. Second, the institute creates virtual embodied conversational agent technologies with multiple modalities for communication (speech, facial expression, gesture, gaze, and posture) to support student learning. Embodied conversational agents are driven by advances in natural language understanding, natural language generation, and computer vision. Third, the institute is creating an innovative multimodal learning analytics framework that analyzes parallel streams of multimodal data derived from students’ conversations, gaze, facial expressions, gesture, and posture as they interact with each other, with teachers, and with embodied conversational agents. Woven throughout the institute's activities is a strong focus on ethics, with an emphasis on creating AI‐augmented learning that is deeply informed by considerations of fairness, accountability, transparency, trust, and privacy. The institute emphasizes broad participation and diverse perspectives to ensure that advances in AI‐augmented learning address inequities in STEM. The institute brings together a multistate network of universities, diverse K‐12 school systems, science museums, and nonprofit partners. Key to all of these endeavors is an emphasis on diversity, equity, and inclusion. 
    more » « less
  3. Abstract This paper provides an experience report on a co‐design approach with teachers to co‐create learning analytics‐based technology to support problem‐based learning in middle school science classrooms. We have mapped out a workflow for such applications and developed design narratives to investigate the implementation, modifications and temporal roles of the participants in the design process. Our results provide precedent knowledge on co‐designing with experienced and novice teachers and co‐constructing actionable insight that can help teachers engage more effectively with their students' learning and problem‐solving processes during classroom PBL implementations. Practitioner notesWhat is already known about this topicSuccess of educational technology depends in large part on the technology's alignment with teachers' goals for their students, teaching strategies and classroom context.Teacher and researcher co‐design of educational technology and supporting curricula has proven to be an effective way for integrating teacher insight and supporting their implementation needs.Co‐designing learning analytics and support technologies with teachers is difficult due to differences in design and development goals, workplace norms, and AI‐literacy and learning analytics background of teachers.What this paper addsWe provide a co‐design workflow for middle school teachers that centres on co‐designing and developing actionable insights to support problem‐based learning (PBL) by systematic development of responsive teaching practices using AI‐generated learning analytics.We adapt established human‐computer interaction (HCI) methods to tackle the complex task of classroom PBL implementation, working with experienced and novice teachers to create a learning analytics dashboard for a PBL curriculum.We demonstrate researcher and teacher roles and needs in ensuring co‐design collaboration and the co‐construction of actionable insight to support middle school PBL.Implications for practice and/or policyLearning analytics researchers will be able to use the workflow as a tool to support their PBL co‐design processes.Learning analytics researchers will be able to apply adapted HCI methods for effective co‐design processes.Co‐design teams will be able to pre‐emptively prepare for the difficulties and needs of teachers when integrating middle school teacher feedback during the co‐design process in support of PBL technologies. 
    more » « less
  4. Free, publicly-accessible full text available June 13, 2026
  5. Free, publicly-accessible full text available June 10, 2026
  6. Free, publicly-accessible full text available June 10, 2026
  7. Free, publicly-accessible full text available April 29, 2026
  8. Free, publicly-accessible full text available April 24, 2026
  9. Free, publicly-accessible full text available April 24, 2026
  10. Free, publicly-accessible full text available April 24, 2026