skip to main content


Search for: All records

Award ID contains: 2112799

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2024
  2. A bstract We consider gravitational sound wave signals produced by a first-order phase transition in a theory with a generic renormalizable thermal effective potential of power law form. We find the frequency and amplitude of the gravitational wave signal can be related in a straightforward manner to the parameters of the thermal effective potential. This leads to a general conclusion; if the mass of the dark Higgs is less than 1% of the dark Higgs vacuum expectation value, then the gravitational wave signal will be unobservable at all upcoming and planned gravitational wave observatories. Although the understanding of gravitational wave production at cosmological phase transitions is still evolving, we expect this result to be robust. 
    more » « less
  3. Arbey, Alexandre ; BĂ©langer, G. ; Desai, Nishita ; Gonzalo, Tomas ; Harlander, Robert V. (Ed.)
    A trio of automated collider event analysis tools are described and demonstrated, in the form of a quick-start tutorial. AEACuS interfaces with the standard MadGraph/MadEvent, Pythia, and Delphes simulation chain, via the Root file output. An extensive algorithm library facilitates the computation of standard collider event variables and the transformation of object groups (including jet clustering and substructure analysis). Arbitrary user-defined variables and external function calls are also supported. An efficient mechanism is provided for sorting events into channels with distinct features. RHADAManTHUS generates publication-quality one- and two-dimensional histograms from event statistics computed by AEACuS, calling MatPlotLib on the back end. Large batches of simulation (representing either distinct final states and/or oversampling of a common phase space) are merged internally, and per-event weights are handled consistently throughout. Arbitrary bin-wise functional transformations are readily specified, e.g. for visualizing signal-to-background significance as a function of cut threshold. MInOS implements machine learning on computed event statistics with XGBoost. Ensemble training against distinct background components may be combined to generate composite classifications with enhanced discrimination. ROC curves, as well as score distribution, feature importance, and significance plots are generated on the fly. Each of these tools is controlled via instructions supplied in a reusable cardfile, employing a simple, compact, and powerful meta-language syntax. 
    more » « less